9,705 research outputs found

    Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first principle theory

    Full text link
    The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.Comment: 12 pages, 7 figures, 1 tabl

    Optimal Paths in Complex Networks with Correlated Weights: The World-wide Airport Network

    Get PDF
    We study complex networks with weights, wijw_{ij}, associated with each link connecting node ii and jj. The weights are chosen to be correlated with the network topology in the form found in two real world examples, (a) the world-wide airport network, and (b) the {\it E. Coli} metabolic network. Here wijxij(kikj)αw_{ij} \sim x_{ij} (k_i k_j)^\alpha, where kik_i and kjk_j are the degrees of nodes ii and jj, xijx_{ij} is a random number and α\alpha represents the strength of the correlations. The case α>0\alpha > 0 represents correlation between weights and degree, while α<0\alpha < 0 represents anti-correlation and the case α=0\alpha = 0 reduces to the case of no correlations. We study the scaling of the lengths of the optimal paths, opt\ell_{\rm opt}, with the system size NN in strong disorder for scale-free networks for different α\alpha. We calculate the robustness of correlated scale-free networks with different α\alpha, and find the networks with α<0\alpha < 0 to be the most robust networks when compared to the other values of α\alpha. We propose an analytical method to study percolation phenomena on networks with this kind of correlation. We compare our simulation results with the real world-wide airport network, and we find good agreement

    Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft-X-ray emission spectroscopy

    Full text link
    The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M emission spectra are compared with ab initio density-functional theory including core-to-valence dipole matrix elements. A qualitative agreement between experiment and theory is obtained. A weak covalent Ti-Al bond is manifested by a pronounced shoulder in the Ti L-emission of Ti3AlC2. As Al is replaced with Si or Ge, the shoulder disappears. For the buried Al and Si-layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and Ti3SiC2, respectively. As a result of relaxation of the crystal structure and the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened. The differences between the electronic structures are discussed in relation to the bonding in the nanolaminates and the corresponding change of materials properties.Comment: 15 pages, 8 figure

    Ground state properties of fluxlines in a disordered environment

    Full text link
    A new numerical method to calculate exact ground states of multi-fluxline systems with quenched disorder is presented, which is based on the minimum cost flow algorithm from combinatorial optimization. We discuss several models that can be studied with this method including their specific implementations, physically relevant observables and results: 1) the N-line model with N fluxlines (or directed polymers) in a d-dimensional environment with point and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass model for a disordered superconductor in the strong screening limit and 3) the Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include

    The structure and function of complex networks

    Full text link
    Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.Comment: Review article, 58 pages, 16 figures, 3 tables, 429 references, published in SIAM Review (2003

    Optimal Traffic Networks

    Full text link
    Inspired by studies on the airports' network and the physical Internet, we propose a general model of weighted networks via an optimization principle. The topology of the optimal network turns out to be a spanning tree that minimizes a combination of topological and metric quantities. It is characterized by a strongly heterogeneous traffic, non-trivial correlations between distance and traffic and a broadly distributed centrality. A clear spatial hierarchical organization, with local hubs distributing traffic in smaller regions, emerges as a result of the optimization. Varying the parameters of the cost function, different classes of trees are recovered, including in particular the minimum spanning tree and the shortest path tree. These results suggest that a variational approach represents an alternative and possibly very meaningful path to the study of the structure of complex weighted networks.Comment: 4 pages, 4 figures, final revised versio

    Exploring the parameter space of texture 4 zero quark mass matrices

    Full text link
    We have attempted to extend the parameter space of the elements of the texture 4 zero Hermitian quark mass matrices, to include the case of `weak hierarchy' amongst them along with the usually considered `strong hierarchy' case. This has been carried out by giving wide variation to the hierarchy defining parameters D_U and D_D, having implications for the structural features of the mass matrices. We find that not only the weakly hierarchical mass matrices are able to reproduce the strongly hierarchical mixing angles but also both the phases having their origin in the mass matrices have to be non zero to achieve compatibility of these matrices with recent quark mixing data. Further noting the difference between the exclusive and inclusive values of V_ub, we have carried out separate analyses corresponding to these.Comment: 13 pages, 4 figures, version accepted for publication in Journal Of Physics
    corecore