75 research outputs found

    Simplicity of extremal eigenvalues of the Klein-Gordon equation

    Full text link
    We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials. If the spectrum of this problem is contained in two disjoint real intervals and the two inner boundary points are eigenvalues, we show that these extremal eigenvalues are simple and possess strictly positive eigenfunctions. Examples of electric potentials satisfying these assumptions are given

    Gamma-ray halos as a measure of intergalactic magnetic fields: a classical moment problem

    Full text link
    The presence of weak intergalactic magnetic fields can be studied by their effect on electro-magnetic cascades induced by multi-TeV gamma-rays in the cosmic radiation background. Small deflections of secondary electrons and positrons as the cascade develops extend the apparent size of the emission region of distant TeV gamma-ray sources. These gamma-ray halos can be resolvable in imaging atmospheric Cherenkov telescopes and serve as a measure of the intergalactic magnetic field strength and coherence length. We present a method of calculating the gamma-ray halo for isotropically emitting sources by treating magnetic deflections in the cascade as a diffusion process. With this ansatz the moments of the halo follow from a set of simple diffusion-cascade equations. The reconstruction of the angular distribution is then equivalent to a classical moment problem. We present a simple solution using Pade approximations of the moment's generating function.Comment: 12 pages, 6 figure

    The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case

    Full text link
    We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case.Comment: 26 pages. Changes in the presentation of some result

    Convergence of resonances on thin branched quantum wave guides

    Full text link
    We prove an abstract criterion stating resolvent convergence in the case of operators acting in different Hilbert spaces. This result is then applied to the case of Laplacians on a family X_\eps of branched quantum waveguides. Combining it with an exterior complex scaling we show, in particular, that the resonances on X_\eps approximate those of the Laplacian with ``free'' boundary conditions on X0X_0, the skeleton graph of X_\eps.Comment: 48 pages, 1 figur

    Boundary relations and generalized resolvents of symmetric operators

    Get PDF
    The Kre\u{\i}n-Naimark formula provides a parametrization of all selfadjoint exit space extensions of a, not necessarily densely defined, symmetric operator, in terms of maximal dissipative (in \dC_+) holomorphic linear relations on the parameter space (the so-called Nevanlinna families). The new notion of a boundary relation makes it possible to interpret these parameter families as Weyl families of boundary relations and to establish a simple coupling method to construct the generalized resolvents from the given parameter family. The general version of the coupling method is introduced and the role of boundary relations and their Weyl families for the Kre\u{\i}n-Naimark formula is investigated and explained.Comment: 47 page

    On the electromagnetic properties of active media

    Full text link
    Several results concerning active media or metamaterials are proved and discussed. In particular, we consider the permittivity, permeability, wave vector, and refractive index, and discuss stability, refraction, gain, and fundamental limitations resulting from causality

    On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson

    Full text link
    The notions of spectral stability and the spectrum for the Vlasov-Poisson system linearized about homogeneous equilibria, f_0(v), are reviewed. Structural stability is reviewed and applied to perturbations of the linearized Vlasov operator through perturbations of f_0. We prove that for each f_0 there is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0isunstable.When is unstable. When f_0$ is perturbed by an area preserving rearrangement, f_0 will always be stable if the continuous spectrum is only of positive signature, where the signature of the continuous spectrum is defined as in previous work. If there is a signature change, then there is a rearrangement of f_0 that is unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is analogous to Krein's theorem for the continuous spectrum. We prove that if a discrete mode embedded in the continuous spectrum is surrounded by the opposite signature there is an infinitesimal perturbation in C^n norm that makes f_0 unstable. If f_0 is stable we prove that the signature of every discrete mode is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36 pages, 12 figure

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    Generalized boundary triples, I. Some classes of isometric and unitary boundary pairs and realization problems for subclasses of Nevanlinna functions

    Get PDF
    © 2020 The Authors. Mathematische Nachrichten published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    Stability and convergence in discrete convex monotone dynamical systems

    Full text link
    We study the stable behaviour of discrete dynamical systems where the map is convex and monotone with respect to the standard positive cone. The notion of tangential stability for fixed points and periodic points is introduced, which is weaker than Lyapunov stability. Among others we show that the set of tangentially stable fixed points is isomorphic to a convex inf-semilattice, and a criterion is given for the existence of a unique tangentially stable fixed point. We also show that periods of tangentially stable periodic points are orders of permutations on nn letters, where nn is the dimension of the underlying space, and a sufficient condition for global convergence to periodic orbits is presented.Comment: 36 pages, 1 fugur
    corecore