75 research outputs found
Simplicity of extremal eigenvalues of the Klein-Gordon equation
We consider the spectral problem associated with the Klein-Gordon equation
for unbounded electric potentials. If the spectrum of this problem is contained
in two disjoint real intervals and the two inner boundary points are
eigenvalues, we show that these extremal eigenvalues are simple and possess
strictly positive eigenfunctions. Examples of electric potentials satisfying
these assumptions are given
Gamma-ray halos as a measure of intergalactic magnetic fields: a classical moment problem
The presence of weak intergalactic magnetic fields can be studied by their
effect on electro-magnetic cascades induced by multi-TeV gamma-rays in the
cosmic radiation background. Small deflections of secondary electrons and
positrons as the cascade develops extend the apparent size of the emission
region of distant TeV gamma-ray sources. These gamma-ray halos can be
resolvable in imaging atmospheric Cherenkov telescopes and serve as a measure
of the intergalactic magnetic field strength and coherence length. We present a
method of calculating the gamma-ray halo for isotropically emitting sources by
treating magnetic deflections in the cascade as a diffusion process. With this
ansatz the moments of the halo follow from a set of simple diffusion-cascade
equations. The reconstruction of the angular distribution is then equivalent to
a classical moment problem. We present a simple solution using Pade
approximations of the moment's generating function.Comment: 12 pages, 6 figure
The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case
We present a technique for reconstructing a semi-infinite Jacobi operator in
the limit circle case from the spectra of two different self-adjoint
extensions. Moreover, we give necessary and sufficient conditions for two real
sequences to be the spectra of two different self-adjoint extensions of a
Jacobi operator in the limit circle case.Comment: 26 pages. Changes in the presentation of some result
Convergence of resonances on thin branched quantum wave guides
We prove an abstract criterion stating resolvent convergence in the case of
operators acting in different Hilbert spaces. This result is then applied to
the case of Laplacians on a family X_\eps of branched quantum waveguides.
Combining it with an exterior complex scaling we show, in particular, that the
resonances on X_\eps approximate those of the Laplacian with ``free''
boundary conditions on , the skeleton graph of X_\eps.Comment: 48 pages, 1 figur
Boundary relations and generalized resolvents of symmetric operators
The Kre\u{\i}n-Naimark formula provides a parametrization of all selfadjoint
exit space extensions of a, not necessarily densely defined, symmetric
operator, in terms of maximal dissipative (in \dC_+) holomorphic linear
relations on the parameter space (the so-called Nevanlinna families). The new
notion of a boundary relation makes it possible to interpret these parameter
families as Weyl families of boundary relations and to establish a simple
coupling method to construct the generalized resolvents from the given
parameter family. The general version of the coupling method is introduced and
the role of boundary relations and their Weyl families for the
Kre\u{\i}n-Naimark formula is investigated and explained.Comment: 47 page
On the electromagnetic properties of active media
Several results concerning active media or metamaterials are proved and
discussed. In particular, we consider the permittivity, permeability, wave
vector, and refractive index, and discuss stability, refraction, gain, and
fundamental limitations resulting from causality
On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson
The notions of spectral stability and the spectrum for the Vlasov-Poisson
system linearized about homogeneous equilibria, f_0(v), are reviewed.
Structural stability is reviewed and applied to perturbations of the linearized
Vlasov operator through perturbations of f_0. We prove that for each f_0 there
is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0f_0$ is perturbed by an area preserving rearrangement, f_0 will
always be stable if the continuous spectrum is only of positive signature,
where the signature of the continuous spectrum is defined as in previous work.
If there is a signature change, then there is a rearrangement of f_0 that is
unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is
analogous to Krein's theorem for the continuous spectrum. We prove that if a
discrete mode embedded in the continuous spectrum is surrounded by the opposite
signature there is an infinitesimal perturbation in C^n norm that makes f_0
unstable. If f_0 is stable we prove that the signature of every discrete mode
is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36
pages, 12 figure
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
Generalized boundary triples, I. Some classes of isometric and unitary boundary pairs and realization problems for subclasses of Nevanlinna functions
© 2020 The Authors. Mathematische Nachrichten published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed
Stability and convergence in discrete convex monotone dynamical systems
We study the stable behaviour of discrete dynamical systems where the map is
convex and monotone with respect to the standard positive cone. The notion of
tangential stability for fixed points and periodic points is introduced, which
is weaker than Lyapunov stability. Among others we show that the set of
tangentially stable fixed points is isomorphic to a convex inf-semilattice, and
a criterion is given for the existence of a unique tangentially stable fixed
point. We also show that periods of tangentially stable periodic points are
orders of permutations on letters, where is the dimension of the
underlying space, and a sufficient condition for global convergence to periodic
orbits is presented.Comment: 36 pages, 1 fugur
- …