We study the stable behaviour of discrete dynamical systems where the map is
convex and monotone with respect to the standard positive cone. The notion of
tangential stability for fixed points and periodic points is introduced, which
is weaker than Lyapunov stability. Among others we show that the set of
tangentially stable fixed points is isomorphic to a convex inf-semilattice, and
a criterion is given for the existence of a unique tangentially stable fixed
point. We also show that periods of tangentially stable periodic points are
orders of permutations on n letters, where n is the dimension of the
underlying space, and a sufficient condition for global convergence to periodic
orbits is presented.Comment: 36 pages, 1 fugur