168 research outputs found

    Vortex matter freezing in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} samples with a very dense distribution of columnar defects

    Get PDF
    We show that the dynamical freezing of vortex structures nucleated at diluted densities in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} samples with a dense distribution of columnar defects, B∼10−2BΦB \sim 10^{-2} B_{\Phi} with BΦ=5B_{\Phi}=5\,kG, results in configurations with liquid-like correlations. We propose a freezing model considering a relaxation dynamics dominated by double-kink excitations driven by the local stresses obtained directly from experimental images. With this model we estimate the relaxation barrier and the freezing temperature. We argue that the low-field frozen vortex structures nucleated in a dense distribution of columnar defects thus correspond to an out-of-equilibrium non-entangled liquid with strongly reduced mobility rather than to a snapshot of a metastable state with divergent activation barriers as for instance expected for the Bose-glass phase at equilibrium.Comment: 12 pages, 7 figure

    Effective temperature in driven vortex lattices with random pinning

    Full text link
    We study numerically correlation and response functions in non-equilibrium driven vortex lattices with random pinning. From a generalized fluctuation-dissipation relation we calculate an effective transverse temperature in the fluid moving phase. We find that the effective temperature decreases with increasing driving force and becomes equal to the equilibrium melting temperature when the dynamic transverse freezing occurs. We also discuss how the effective temperature can be measured experimentally from a generalized Kubo formula.Comment: 4 pages, 4 figure

    Voltage rectification effects in mesoscopic superconducting triangles: experiment and modelling

    Full text link
    The interaction of externally applied currents with persistent currents induced by magnetic field in a mesoscopic triangle is investigated. As a consequence of the superposition of these currents, clear voltage rectification effects are observed. We demonstrate that the amplitude of the rectified signal strongly depends on the configurations of the current leads with the lowest signal obtained when the contacts are aligned along a median of the triangle. When the contacts are aligned off-centered compared to the geometrical center, the voltage response shows oscillations as a function of the applied field, whose sign can be controlled by shifting the contacts. These results are in full agreement with theoretical predictions for an analogous system consisting of a closed loop with a finite number of identical Josephson junctions.Comment: 5 pages, 4 figures, published in Phys. Rev.

    Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings

    Full text link
    Multilevel Monte Carlo simulations of a BSCCO system are carried out including both Josephson as well as electromagnetic couplings for a range of anisotropies. A first order melting transition of the flux lattice is seen on increasing the temperature and/or the magnetic field. The phase diagram for BSCCO is obtained for different values of the anisotropy parameter γ\gamma. The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev. Lett. {\bf 75}, 1166 (1995)] is obtained for γ≈250\gamma\approx 250 provided one assumes a temperature dependence λ2(0)/λ2(T)=1−t\lambda^2(0)/\lambda^2(T)=1-t of the penetration depth with t=T/Tct=T/T_c. Assuming a dependence λ2(0)/λ2(T)=1−t2\lambda^2(0)/\lambda^2(T)=1-t^2 the best fit is obtained for γ≈450 \gamma\approx 450. For finite anisotropy the data is shown to collapse on a straight line when plotted in dimensionless units which shows that the melting transition can be satisfied with a single Lindemann parameter whose value is about 0.3. A different scaling applies to the γ=∞\gamma=\infty case. The energy jump is measured across the transition and for large values of γ\gamma it is found to increase with increasing anisotropy and to decrease with increasing magnetic field. For infinite anisotropy we see a 2D behavior of flux droplets with a transition taking place at a temperature independent of the magnetic field. We also show that for smaller values of anisotropy it is reasonable to replace the electromagnetic coupling with an in-plane interaction represented by a Bessel function of the second kind (K0K_0), thus justifying our claim in a previous paper.Comment: 12 figures, revtex

    Mode-locking in driven vortex lattices with transverse ac-drive and random pinning

    Full text link
    We find mode-locking steps in simulated current-voltage characteristics of driven vortex lattices with {\it random} pinning when an applied ac-current is {\it perpendicular} to the dc-current. For low frequencies there is mode-locking only above a non-zero threshold ac force amplitude, while for large frequencies there is mode-locking for any small ac force. This is consistent with the nature of {\it transverse} temporal order in the different regimes in the absence of an applied ac-drive. For large frequencies the magnitude of the fundamental mode-locked step depends linearly with the ac force amplitude.Comment: 4 pages, 4 figures, .tar.gz fil

    Heterogeneous dynamics of the three dimensional Coulomb glass out of equilibrium

    Full text link
    The non-equilibrium relaxational properties of a three dimensional Coulomb glass model are investigated by kinetic Monte Carlo simulations. Our results suggest a transition from stationary to non-stationary dynamics at the equilibrium glass transition temperature of the system. Below the transition the dynamic correlation functions loose time translation invariance and electron diffusion is anomalous. Two groups of carriers can be identified at each time scale, electrons whose motion is diffusive within a selected time window and electrons that during the same time interval remain confined in small regions in space. During the relaxation that follows a temperature quench an exchange of electrons between these two groups takes place and the non-equilibrium excess of diffusive electrons initially present decreases logarithmically with time as the system relaxes. This bimodal dynamical heterogeneity persists at higher temperatures when time translation invariance is restored and electron diffusion is normal. The occupancy of the two dynamical modes is then stationary and its temperature dependence reflects a crossover between a low-temperature regime with a high concentration of electrons forming fluctuating dipoles and a high-temperature regime in which the concentration of diffusive electrons is high.Comment: 10 pages, 9 figure

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    Crossed-ratchet effects and domain wall geometrical pinning

    Get PDF
    The motion of a domain wall in a two dimensional medium is studied taking into account the internal elastic degrees of freedom of the wall and geometrical pinning produced both by holes and sample boundaries. This study is used to analyze the geometrical conditions needed for optimizing crossed ratchet effects in periodic rectangular arrays of asymmetric holes, recently observed experimentally in patterned ferromagnetic films. Geometrical calculations and numerical simulations have been used to obtain the anisotropic critical fields for depinning flat and kinked walls in rectangular arrays of triangles. The aim is to show with a generic elastic model for interfaces how to build a rectifier able to display crossed ratchet effects or effective potential landscapes for controlling the motion of interfaces or invasion fronts.Comment: 13 pages, 18 figure

    Slow relaxations and history dependence of the transport properties of layered superconductors

    Full text link
    We study numerically the time evolution of the transport properties of layered superconductors after different preparations. We show that, in accordance with recent experiments in BSCCO performed in the second peak region of the phase diagram (Portier et al, 2001), the relaxation strongly depends on the initial conditions and is extremely slow. We investigate the dependence on the pinning center density and the perturbation applied. We compare the measurements to recent findings in tapped granular matter and we interpret our results with a rather simple picture.Comment: 4 pages, 4 fig
    • …
    corecore