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Crossed-ratchet effects and domain wall geometrical pinning
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The motion of a domain wall in a two-dimensional medium is studied by taking into account the internal
elastic degrees of freedom of the wall and geometrical pinning produced by both holes and sample boundaries.
This study is used to analyze the geometrical conditions needed for optimizing crossed-ratchet effects in periodic
rectangular arrays of asymmetric holes, recently observed experimentally in patterned ferromagnetic films Exact
calculation as a function of the geometry of the sample and numerical simulations have been used to obtain the
anisotropic critical field for depinning fla and kinked walls in rectangular arrays of triangles. The aim is to
show with a generic elastic model for interfaces how to build a rectifie able to display crossed-ratchet effects or
effective potential landscapes for controlling the motion of interfaces or invasion fronts.
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I. INTRODUCTION

The dynamics of elastic interfaces is responsible for a wide
variety of physical phenomena in very different experimental
systems. Prominent examples are the propagation of reaction
fronts or surface growth in material science,1 cell motility
and membrane dynamics in biology,2 domain walls (DW)
in ferromagnetic3–8 or ferroelectric films 9–11 flui invasion
in porous media,12 contact lines of liquids menisci,13 and
crack propagation.14,15 In all these cases, the presence of
heterogeneities, which locally promote wandering, compete
with the elasticity of the interface, giving rise to complex
collective pinning effects. Understanding these effects is a
challenging problem relevant from both basic and applied
viewpoints.

A particularly interesting case of interface pinning is the
“geometrical pinning” induced by the presence of artificiall
introduced holes or antidots,16–18 or by a spatial modulation
of the sample boundary conditions in narrow samples.7,19–23

These kind of boundaries can pin the interface by locally
reducing its extension, thus saving surface tension energy.
For extended DW this kind of pinning has been recently
realized experimentally and showed to be able to modify the
magnetization dynamics7,16,18–20 and to produce, in particu-
lar, interesting ratchet transport of magnetic DW.3,24 Being
mostly geometrical (i.e., determined mostly by the shape and
distribution of holes or by the geometry of the boundaries and
not much by the specifi microscopic pinning interaction) this
kind of pinning has the advantage over other artificia pinning

mechanisms that it can be more easily tailored at a wide range
of scales to control the wall motion in various specifi ways.

We have recently analyzed, specificall , the pinning effect
of asymmetric holes on the propagation of DW in magnetic
films findin that, under certain geometries and oscillating
external magnetic fields the motion of fla and kinked walls
is rectifie in opposite directions:3 the asymmetry between
forward and backward fla wall propagation results in a direct
ratchet effect whereas the asymmetry between upward and
downward kink propagation along a wall induces an inverted
ratchet effect. This striking sensitivity yields new strategies
to control the motion of the wall. The crossed rectificatio
reported in Ref. 3 relies on the difference between the critical
field to depin the wall in each direction, and it is also present
in a generic model for elastic interfaces: the φ4 model.25 In
this paper we calculate the depinning fiel of a generic φ4

interface in the presence of an array of triangular antidots by
both geometrical considerations and numerical simulations.
We use this simple model because it is the minimum model
that captures the essential physics behind the crossed-ratchet
effects reported in Ref. 3: the competition between pinning and
driving forces on a one-dimensional (1D) elastic interface that
propagates in a two-dimensional (2D) array of asymmetric
pinning centers. Actually, numerical simulations using the
complete micromagnetic formulation provide qualitatively the
same results.24 In addition, our method can be widely used to
design interface rectifier of elastic interfaces by using holes
or boundary conditions in an arbitrary geometry.
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Our starting point is the overdamped φ4 model in the plane,
i.e., a scalar fiel φ(x,y; t) obeying the following evolution
equation:

η∂tφ = c∇2φ + ε0(φ − φ3) + H (1)

where c is the elastic stiffness of the order parameter, ε0 is
proportional to the local barrier separating two minima of the
local free energy, H is an external fiel biasing one of the
two minima, and the friction coefficien η sets the microscopic
time scale. The evolution equation (1) derives from the energy
functional

E =
∫

dxdy
[
U (φ(x,y)) − Hφ(x,y) + c

2
|∇φ(x,y)|2

]
, (2)

with U (φ) = ε0(φ2 − 1)2/4. In a ferromagnetic material, the
firs term U (φ) would correspond to an uniaxial anisotropy
energy, the second term would be the Zeeman energy, and
the last one would represent the exchange energy. Thus,
H is the magnetic fiel applied along the easy anisotropy
axis and φ(x,y; t) corresponds to M/MS , the magnetization
component parallel to the applied magnetic fiel normalized
by the saturation magnetization. For H = 0, and with the
appropriate boundary condition, say, φ(−L,y; t) = 1 and
φ(L,y; t) = −1, the stationary solution of Eq. (1) is given
by a domain on the left side of the plane with a positive and
approximately homogenous fiel and a domain on the right
side with a negative field both separated by an interface of
width proportional to

√
c/ε0. When the fiel is switched on to

a positive (negative) value, the interface is pushed to the right
(left) to minimize the total energy. However, the interface also
has an elastic energy proportional to its length. Therefore,
if the geometry where the fiel is define is such that the
length of the interface increases when moving to the left or
right, then the interface will be pinned until the fiel reaches
a critical value. Our goal is to provide an estimation of such
a depinning fiel in a general geometry and to analyze the
geometrical conditions in which rectificatio effects appear in
the elastic interface propagation.

The organization of the paper is as follows. In Sec. II,
we develop a general theoretical framework to address the
problem of rectificatio of DW. We reduce the fiel φ to an
elastic wall and derive an analytical expression for the local
depinning fiel in two-dimensional stripes with arbitrarily
shaped borders. In Sec. III we apply the previous results to
build a 2D array of triangular holes that displays ratchet effects
and give specifi predictions for the appearance of normal and
crossed-ratchet effects. In Sec. IV we summarize our results.

II. DEPINNING FIELDS IN ARBITRARY GEOMETRY:
GENERAL THEORY

A. From fiel equations to elastic walls

Our aim is to calculate the depinning fiel of certain
interfaces in an arbitrary geometry. To simplify the task, we
firs need to reduce the whole fiel equation (1) to a parametric
description of the interface, in the spirit of the collective coor-
dinate approach widely used in one-dimensional models.26

In Appendix A we construct a solution of Eq. (1) where two
domains of positive and negative magnetization are separated
by a wall define by the line [x(s),y(s)]. The solution reads

φ(x,y) = tanh
[
g(x,y)

w

]
, (3)

where g(x,y) is the distance of point (x,y) to the backbone of
the wall [x(s),y(s)] and

w =
√

2c

ε0
(4)

can be considered as its width. Equation (3) is well known as
the fiel corresponding to a single wall in the one-dimensional
φ4 model, and, as we show in Appendix A, can be extended to
two dimensions if the curvature radius of the wall [x(s),y(s)]
is much larger than its width w.

The energy of this solution, for small width w, can be
approximated by (see Appendix A)

E = σd − 2HA, (5)

where d is the length of the wall [x(s),y(s)], A is the area of
the positive domain (at one side of the wall), and

σ =
√

8ε0c

3
(6)

is the energy of the wall per unit of length. Consequently, the
wall behaves as an elastic line with a linear tension σ and
pushed by a fiel H .

Our approximations are exact for infinitel narrow inter-
faces, w → 0, since we are reducing the fiel in the whole
plane to a single curve definin the center of the interface. For
thin interfaces the approximation is good enough, provided the
width of the wall remains approximately constant all along the
curve and that the local curvature radius of the line is smaller
than the domain wall width w. In brief, these conditions ensure
that the state of φ with a domain wall can be well described
exclusively by the transverse degrees of freedom of an elastic
interface.

B. Interface pinning in a holed medium

We will now consider a domain wall in a two-dimensional
medium with holes or multiply connected space. For the scalar
fiel φ this amounts to solving Eq. (1) in a domain � − �,
which includes all the two-dimensional space �, except the
possibly noncompact region � occupied by the holes and
outer space. The boundary conditions at the border of the
holes, δ�, depend on the specifi physical system modeled
by Eq. (1). Throughout this paper we set free (Neumann)
boundary conditions for the order parameter, i.e., ∂nφ|δ� = 0.
This is an appropriate choice if φ models the magnetization of
a material along a given direction and the holes � are simply
define as the absence of magnetic material. The simplest
picture of this situation is a set of discrete spins with no
interaction with the hole: the magnetization φ can take any
value at the border δ�, but the absence of an interaction term
with the hole implies the Neumann condition ∂nφ|δ� = 0. A
consequence of this type of boundary condition is that the
DW are orthogonal to the boundaries [see below Eq. (8)],
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FIG. 1. (Color online) Interface in a two-dimensional medium
with free holes (shapes in black/dark green) and sample boundaries
(black/dark green rectangle). The gain of interface energy by
optimally intersecting the holes and sample boundaries produces
domain wall pinning.

in agreement with the walls observed by full micromagnetic
calculations.24 Neumann boundary conditions are suitable for
other applications of the φ4 Eq. (1), such as reaction diffusion
equations where φ represents the concentration of a reactant
confine in � − �.

Within the interface approximation described in Sec. II A,
interface pinning arises from the gain of line energy (reduction
of the total length of the interface) that is possible by optimally
intersecting the holes and sample boundaries (see Fig. 1). From
Eq. (5) the energy of the pinned domain wall then reads

E = σ

N∑
i=0

di − 2HA, (7)

where di = ∫ si+1
si

ds
√

ẋ2 + ẏ2 is the length of the interface
segment connecting the holes i and i + 1 (with i = 0 and
i = N designating the sample boundaries) and the area A now
excludes regions belonging to �.

The free (Neumann) boundary conditions for the order
parameter at the hole and sample boundaries translate in the
interface description in the orthogonality condition

vi · ti = 0 ∀i, (8)

where ti is the tangent vector of the boundary and vi ≡
[ẋ(si),ẏ(si)] is the tangent vector of the interface, both at the
intersection point [x(si),y(si)].

Metastable states of the interface are therefore local minima
of the energy (7) with segments satisfying the orthogonality
constraint (8) at its ends. In the following we discuss the
geometry of these optimal segments, which are the building
blocks of our method.

C. Equilibrium state of a wall

Our next step is to calculate the equilibrium profil of an
interface segment and its stability. The energy of an interface
segment is a function of both its shape and the location of its
ends or contact points. In order to fin the possible metastable
states of the segment we need to minimize the energy given
by Eq. (5) with the constraint (8).

FIG. 2. (Color online) The energy of an elastic wall (dark grey
arc or red arc online) is minimized by an arc of radius r = σ/(2H ).
An equilibrium state is reached when the arc intersects the boundaries
orthogonally.

As shown in Appendix B, the solution of the corresponding
Euler-Lagrange equation, regardless of any boundary condi-
tion, is a circular arc of radius

r ≡ σ

2H
. (9)

Consider now a wall confine between two irregular
boundaries, as plotted in Fig. 2. Let l be the distance between
the contact points, and let θ1 + 90◦ (θ2 + 90◦) be the angle
formed by the upper (lower) boundary and the line connecting
the two contact points. The elastic wall minimizes its energy
by adopting the shape of an arc of radius r and it must
be orthogonal to the boundaries at the contact points. As
illustrated in Fig. 2 , this implies that θ1 = θ2 = θ and

sin θ = l/2
r

= Hl

σ
, (10)

where we have used the expression for the radius of the wall,
Eq. (9).

D. Local depinning field for an anchored wall

We can now proceed to calculate local depinning field for
narrow DW bounded between two borders, which are central
for studying the ratchet effect. Given a metastable state of the
anchored domain wall the local depinning fiel is define as
the maximum fiel it can support by deforming continuously
as we increase the field Above this local depinning fiel the
domain wall escapes the local environment and slides until it is
trapped again in a new metastable state with a larger depinning
field if it exists.27 Otherwise it continues sliding.

As an illustration, consider the particular case where the
bottom border is the x axis and the top border is given by and
arbitrary smooth function f (x) > 0. The wall, as we have seen
above, is an arc of radius r = σ/(2H ). Its center must lie on the
x axis, say at x0, since the wall is perpendicular to the x axis at
the lower contact point. The upper contact point, [x1,f (x1)],
belongs to the arc, and hence (x1 − x0)2 + f (x1)2 = r2, and
the orthogonality condition implies

f (x1)
x1 − x0

= f ′(x1).
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The upper contact point is then given by the condition

r = f (x1)
f ′(x1)

√
1 + f ′(x1)2. (11)

Note that only the solutions with f ′(x1) � 0 must be taken if
H � 0. If such a solution x1 exists for a given r (i.e., for a
given fiel H ), the lower contact point is given by x2 = x1 if
f ′(x1) = 0 and x2 = r + x1 − f (x1)/f ′(x1) otherwise.

For H = 0 (r → ∞) the only possible solutions are points
x1 such that f ′(x1) = 0. These solutions are straight vertical
segments joining the two borders at x1. For concreteness let us
assume that x1 = 0 for H = 0 and that f ′′(0) > 0, so the initial
state is metastable. In such a case if we quasistatically increase
H (decrease r) from x1 = 0 we can generate a continuum set
of solutions x1(r) parametrized by the field At some fiel
Hc = σ/2rc it is possible however to have a discontinuity in
x1(r) due to the absence of solutions beyond Hc. We can then
defin the critical radius of the initial metastable state as

rc = min
x1

{
f (x1)
f ′(x1)

√
1 + f ′(x1)2

}
f ′(x1)>0

, (12)

where the condition f ′(x1) > 0 ensures that rc is positive, so
we obtain the forward depinning field The depinning fiel is
therefore Hc = σ/2rc, the upper contact point of the critical
arc is x

up
c ≡ x1(rc), and the lower contact is x low

c = r + xc −
f (xc)/f ′(xc).

As an illustration consider the geometry displayed in Fig. 3,
f (x) = 2 − cos(x). As a function of the fiel H stable arcs
have a radius r = σ/2H and the upper contact point must
satisfy

r = 2 − cos(x)
sin(x)

√
1 + sin(x)2. (13)

The solutions of this equation for different field are shown
graphically in Fig. 3 (upper plot), and the corresponding arcs
are shown in Fig. 3 (lower plot). The critical state [also shown
in Fig. 3 (lower plot)] has x

up
c ≈ 0.85 and corresponds to rc ≈

2.23 and x low
2 ≈ 1.30. The initially fla interface for H = 0

will shift forward quasistatically upon increasing the field
following the x1(r) curve. Above Hc = σ/(2rc) the interface
will move at a finit speed.

Let us now analyze the depinning from a rounded tip of
curvature radius W , as shown in Fig. 4. We assume, for
concreteness, the form

f (x) = (l0/2 + W ) −
√

W 2 − x2, |x| < x0, (14)
f (x) = f (x0) + tan α|x − x0|, |x| > x0, (15)

where x0 = W sin(α) and f (x0) = (l0/2 + W ) − W cos α.
The firs equation describes a rounded circular point, and the
second a line with the asymptotic slope angle α. In this case
x1 increases monotonically from zero and no more solutions
of Eq. (11) exist for x > x0. We thus have xc = W sin α and
rc = f (x0)/ sin α. The critical fiel is therefore

Hc = σ sin α

l0 + 2W (1 − cos α)
. (16)

For a sharp W → 0 tip we have

Hc = σ sin α

l0
, (17)

FIG. 3. Construction of the metastable elastic lines bounded
between 0 and f (x) = 2 − cos(x), as a function of the external fiel
or arc radius. We depict the boundaries and the metastable walls for
different field H in the lower plot. In the upper plot we represent
the function [f (x)/f ′(x)]

√
1 + f ′(x)2. The intersection of the arc

radii r = σ/(2H ) with this function gives the upper contact point
[x1,f (x1)] of the metastable wall with the top border f (x). The
depinning fiel is Hc, above which there are no metastable states.

implying a very strong pinning in the limit of strong con-
striction l0 → 0. Interestingly, in this limit the depinning fiel
would be ultimately controlled by the rounding W in more
realistic rounded tips.

III. BUILDING A 2D RATCHET

From this general theory of interface pinning, we will
show how to build a 2D ratchet for extended DW with both
direct and inverted rectificatio effects, as a function of the

FIG. 4. A tip rounded at the scale W .
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FIG. 5. (Color online) A two-dimensional ratchet geometry made
by triangles. The arcs are a schematic representation of a domain
wall moving either to the right or to the left. These two directions of
propagation are not equivalent since the wall must be orthogonal to the
boundaries at the contact points: this implies a different configuratio
for propagation to the left along the vertical triangle bases than for
propagation to the right along the diagonal triangle sides. If the holes
would be symmetric (circles or squares) both directions of motion
would be the same, without obtaining a ratchet geometry.

applied field by choosing the appropriate geometry for an
array of asymmetric holes. We take as a starting point the
geometry depicted in Fig. 5, where triangular defects are
distributed in a rectangular array, which is similar to the hole
arrangement analyzed in Ref. 3. This array of triangles presents
a symmetry of reflectio along the X axis but broken reflectio
symmetry along the Y axis, which is the basic condition for
the observation of ratchet effects: the equivalence between
forward and backward domain wall propagation is broken in
the array, allowing for domain wall rectificatio effects.

This kind of ratchet effect has been mostly studied in
1D magnetic nanowires.19–22 However, in a 2D array such
as shown in Fig. 5 the 1D character of the elastic domain
walls opens the possibility of extra propagation modes. In
particular, when a wall is pinned between two lines of defects,
it develops kinks and antikinks, as shown in Fig. 6. Kinked
walls have already been observed by magnetooptical Kerr
effect microscopy and micromagnetic simulations in magnetic
film with 2D arrays of asymmetric defects.3,24 In general,
kinks can be nucleated as soon as there is a point in the line of
defects with a different depinning fiel from the rest. In real
magnetic film of finit area this can happen either at the fil
boundary (the wall segment located between the last hole in
the array and the fil boundary being different from any other
wall segment pinned in between two triangles) or due to small
inhomogeneities in the sample.

Depending on their shape and the sign of the field kinks
and antikinks can move upward or downward, turning in a
net wall motion to the left or to the right. This kink motion
is also asymmetric, reflectin the Y -axis asymmetry of the
pinning potential by the array of triangles, so that it opens
the possibility of a rectifie motion of the kinked wall. Let
us analyze in detail how the symmetry properties of the
array influenc kink propagation: for example, as shown in
Fig. 6, a kink moving upward [Fig. 6(a)] is equivalent to an
antikink moving downward [Fig. 6(b)] upon reflectio along

FIG. 6. (Color online) Broken symmetry in a 2D kinked wall.
(a) Kink moving upward. (b) After an x-axis reflection an antikink
moving downward is obtained. (c) After a second y-axis reflection a
kink moving downward on a different array (inverted triangle array)
is obtained. From (d) to (f) the same reflection are shown for an
antikink.

the X axis, which is an allowed symmetry operation of the
array of triangles. In fact, both movements (kink upward and
antikink downward) result in a net backward motion of the
extended domain wall. The critical fiel for this propagation
process will be labeled HU from now on. However, a kink
moving downward [Fig. 6(c)] is the result of a reflectio
upon the Y axis of the antikink moving downward. This is
a broken symmetry in the array (note the inverted triangles),
implying that both situations are not equivalent. Actually, both
the downward motion of a kink [Fig. 6(e)] and the upward
motion of an antikink [Fig. 6(d)], which are equivalent upon
reflectio along the X axis, result in a net forward motion of the
extended wall. The critical fiel for this propagation process
will be labeled HD in the following. In short, HU and HD could
not be the same due to the broken Y -axis symmetry in the array.

Thus, to understand domain wall propagation in the rect-
angular array of triangles two facts must be considered: first
the broken Y -axis symmetry breaks the equivalence between
forward and backward domain wall propagation; second, the
extended nature of DW in the 2D array of holes allows for
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extra propagation modes not possible in 1D geometries, such
as those corresponding to nanowires: fla wall propagation
and kinked wall propagation. If a wall is pushed to the right
by the applied fiel two different propagation modes can be
activated: either forward fla wall propagation (at a critical fiel
HF) or kinked wall propagation (by kinks moving downward
and/or antikinks moving upward at HD). In contrast, if a wall is
pushed to the left by the applied fiel the possible propagation
modes will be either backward fla wall propagation (at a
critical fiel HB) or kinked wall propagation (by kinks moving
upward and/or antikinks moving downward at HU). The
global behavior of walls upon propagation across the array
of asymmetric defects will depend on the relationships among
the four relevant critical field HF, HB, HU, and HD. Actually,
for some geometries, it can happen that the rectificatio of kink
motion is opposite to the rectificatio of a vertical nonkinked
wall described previously. This crossed-ratchet effect offers
promising technological applications since it allows a non-
trivial control of the two-dimensional wall that provides, for
example, a memory effect in the magnetic system:3 once a wall
has propagated into the patterned fil pushed in the forward
direction by a fiel in the range HF < H < HB, it will move
backward under the action of an ac fiel of amplitude H < HU.
Thus the magnetization relaxes toward its last saturating value
and the system remembers the sign of the last saturating
magnetic fiel independent of the value of the remanent
magnetization.

First, we will analyze the propagation of a fla wall crossing
a line of triangular defects (forward-backward ratchet), which
is equivalent to the propagation of DW in nanowires with
asymmetric geometry.19–22 Then, we will study the upward-
downward propagation of a kink in a wall pinned in between
two adjacent defect lines (upward-downward ratchet). Finally,
we will discuss the geometrical parameters needed to design
2D arrays of asymmetric holes with crossed-ratchet behav-
ior (with opposite sign for forward-backward and upward-
downward ratchets).

A. Flat walls: Forward and backward propagation

An infinitel narrow domain wall moving from the left to
the right (forward) across a vertical line of triangles (see Fig. 5)
will be pinned at the base of the triangles, where the distance
between the ends of the wall is minimum. The depinning fiel
can be derived from the one obtained in Sec. II D for a geometry
define tip and a fla boundary, as in Fig. 4. Now we have two
symmetric tips but this situation is equivalent to the previous
one if we add the mirror image of the tip, with the wall adopting
the same shape as the one depicted in Fig. 4 (plus its mirror
image). Therefore, the depinning fiel is identical to the one
given by Eq. (17):

HF = σ sin θ

l0
, (18)

where θ is the angle between the sides of the triangles and
the horizontal, and l0 is the vertical distance between triangles
(see Fig. 5). Notice also that the critical fiel (18) is, according
to Eq. (10), the one for which the wall accommodates to the
boundary of both triangles.

A wall moving to the left (backward), like the one depicted
in Fig. 5, will also be pinned between the same vertices of the
triangles, but now it has to grow along the vertical bases, i.e.,
the angle of the boundaries in Eq. (17) is 90◦. Therefore,

HB = σ

l0
. (19)

We fin HF/HB = sin θ � 1, i.e., it is easier for the wall
to move forward than backward, as expected. The triangles
can therefore rectify the motion of the wall. By applying an
alternating fiel of peak intensity H , with HB < H < HF, the
wall will have a net forward motion, so that a direct ratchet
effect is obtained.
Finite width effects: We next compare our simple previous

geometrical estimates for HF and HB with simulations for a
more realistic φ4 domain wall with a finit width, as was done
in Ref. 3. We integrate the evolution equation, Eq. (1), using
typical first-orde integration methods.28 We use a rectangular
Lx × Ly box with periodic boundary conditions in the y

direction and we impose the presence of an initial DW fixin
the following boundary conditions in the x direction: φ((x =
0),y,t) = 1 and φ((x = Lx),y,t) = −1. The simulations then
start with a fla wall at the left border of the sample, where no
holes are present. An array of asymmetric holes (triangles) in
the center of the sample, with the parameters depicted in Fig. 5,
is introduced in the model, imposing free boundary conditions
for the scalar order parameter at the holes border, as explained
in Sec. II B. Then the system response to positive and negative
applied field can be probed and the depinning magnetic field
can be obtained and fully characterized versus all geometrical
parameters (l0,b,θ,β,h) and material properties (c, ε0, ω, σ ).

In the inset of Fig. 7 we plot the backward depinning field
HB, of a φ4 domain wall as a function of l0 for different elastic
constants c and fi ed ε0 = 1. This is equivalent to changing
the domain wall width w = √

2c/ε0 and the domain wall

0.001

0.01

0.1 0.3 1.0

H
B

/w

(l0 + w)/(l0 + b)

0

0.1

0.2

40 80 120

H
B

l0

c=25
c=50
c=75

c=100
x−1

FIG. 7. (Color online) Scaled HB/w vs (l0 + w)/(l0 + b) for
different values of c, l0, and b. The solid line indicates the HB/w ∼
(l0 + w)−1 dependence. The inset shows a backward depinning fiel
for a φ4 domain wall, HB, as a function of the vertical gap between
triangles, l0, for different values of the elastic constant c or domain
wall width w.
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energy σ = √
8cε0/3, which scales as σ ∼ w. HB is found

to increase as a function of c, mainly due to the increase in
domain wall energy σ , and to decrease as a function of l0.
All the data of HB obtained from the different simulations
can be scaled to a single curve, if we plot HB/w ∼ HB/σ

as a function of (l0 + w)/(l0 + b) (see main panel of Fig. 7).
For small values of l0, HB/w ∼ (l0 + w)−1 as predicted by
Eq. (19), except for a correction to l0 which is of the order of
the domain wall width w. This correction can be qualitatively
understood by noting that the φ4 wall just below HB extends
from the tip of the triangles up to a distance of order w into the
base of each of them, so that the center of the wall describes
an arc covering a vertical distance l0 + w. It is interesting
to mention that this correction is the same as predicted by
Eq. (16) for a rounded tip of curvature radius equal to domain
wall width (W = w) and α = 90◦ (corresponding to backward
depinning). That is, finit domain wall width and tip rounding
of defect geometry have equivalent effects on depinning fields
softening the magnetic behavior in comparison to an analytical
calculation for sharp tips and narrow DW. At large values
of l0, HB/w deviates from the behavior HB/w ∼ (l0 + w)−1,
decreasing steeply precisely when (l0 + w)/(l0 + b) ∼ 1. The
reason is that for the simulations with varying l0 we fi the
periodicity of the lattice, l0 + b. Therefore, for large values
of l0 the base of triangles becomes small, and eventually of
order w, strongly reducing the geometric pinning mechanism
when w ∼ b.

In the inset of Fig. 8 we show HF versus θ for the φ4 wall,
for different values of l0 and constant c = 50. The main panel
of Fig. 8, shows the forward-backward asymmetry for the fla
wall calculated as HF/HB in comparison with the analytical
prediction of Eq. (18) for a narrow domain wall HF/HB =
sin θ . The simulated values follow nicely the sin θ line except
for small deviations at small and large angles θ ∼ 90◦. These
can be in part attributed to the discreteness of the lattice, which
does not allow production of smooth slopes at the scale w when
the angle is too close to θ = 0◦ and θ = 90◦.
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FIG. 8. (Color online) Forward-backward asymmetry for the fla
φ4 wall with c = 50, HF/HB vs sin θ , calculated for different l0/(l0 +
b). The inset shows the forward depinning field HF, for a φ4 domain
wall, as a function of the isosceles angle, θ , for different values of the
vertical gap between triangles, l0.

In short, our simulations with the φ4 model are consistent
with the geometric estimates for a narrow wall and show how
to correct the depinning field for single arcs with a finit
width, which can be relevant for experimental situations.24

The depinnings of single arcs are, on the other hand, the main
building blocks for calculating all the anisotropic depinning
field and, in particular, the crossed-ratchet effect. Thus, the
softening of the critical field observed due to finite-widt
corrections and/or the effect of rounded tips could also be
applied in a similar way to the geometric estimates of the
propagation of kinked walls.

B. Kinked wall: Upward and downward propagation

1. Upward propagation

The depinning fiel for kinks can also be calculated using
the basic geometry analyzed in Sec. II C. Figure 9 shows the
evolution of a wall forming a kink as it is pushed upward when
the fiel increases from H = 0. The initial disposition of the
wall is labeled as 0. The critical fiel HU = σ/(2rmin) for a
complete depinning of the kink is given by the arc with minimal
radius rmin. For a given geometry, one has to carefully trace
the trajectory of the wall, as depicted in Fig. 9, and compute
the minimal radius in each step.

To step from 0 to 1, i.e., to depin the transverse horizontal
segment of the kink, is similar to the situation depicted in Fig. 4
with α = 90◦ − θ . Therefore, the corresponding critical fiel
is σ cos θ/(2h). However, the base b of the triangle can be too
short for the domain wall to reach the symmetrical position
described in Fig. 4. The wall is maximally tilted at an angle β

(see Fig. 5). In this situation, the corresponding angles θ1 = θ2
in Fig. 2 are equal to β (the angle formed with the base of the
rightmost triangle in Fig. 9) and the distance between the two
contact points is l = h/ cos β. The wall reaches this orientation
if H > σ sin β/l = σ sin(2β)/(2h). Consequently, the critical

FIG. 9. (Color online) Upward motion of a kink in an elastic wall
(red online).
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FIG. 10. (Color online) Critical fields HD and HU, normalized by σ/2h, vs β calculated for θ = 45◦ for (a) h/l0 = 10, (b) h/l0 = 1, and
(c) h/l0 = 0.1. Note that for large β, HD becomes equal to HU and, therefore, a single line appears in the figures

fiel to move from 0 to 1 is the minimum of these two fields
namely,

H U
1 = σ

2h
min {cos(θ ), sin(2β)}

= σ

2h
min

{
cos(θ ),

bh

h2 + (b/2)2

}
. (20)

The next critical arc is 3, a wall orthogonal to the contact
sides of the triangles across a diagonal of the rectangular cell of
triangles. The center of this arc is the point C3, the intersection
between the two prolongations of the triangles sides. The
radius of arc 3 is l0 + b/2 + h/ tan θ , and the corresponding
critical fiel is

H U
3 = σ

2h

(
1

l0/h + tan β + 1/ tan θ

)
. (21)

Finally, one should also consider the diagonal arc 5 to
complete the upward motion of the kink. However, the radius
of this arc is bigger than ht + h = b/(2 tan θ ) + h, resulting
in lower critical field for the geometries considered in this
paper. The fina result for upward motion is

HU = max
{
H U

1 ,H U
3

}
. (22)

From the above equations, three geometrical parameters
of the rectangular array of triangles are found to control the
interplay between the different depinning processes of the

kinked wall and, thus, the relevant critical fields the angle
θ that define the triangle shape, the angle β that characterizes
the shape of the horizontal intertriangle region (where β is
given by tan β = b/2h), and the ratio h/l0 between horizontal
and vertical triangle distance. This last parameter, h/l0, is only
important in the depinning of the diagonal arc 3. Figure 10
shows the calculated HU, normalized by the scale factor σ/2h,
as a function of β for θ = 45◦ and different values of the
ratio h/l0 = 10,1,0.1. For large β, HU is given by H U

1 , so
that it is the same in the three panels of Fig. 10. Below
β � 22◦, there is a crossover to HU = H U

3 indicated by the
upturn in HU(β) as β decreases. It occurs at different angular
positions depending on h/l0: βc = 2.6◦, 13◦, and 21◦ for
h/l0 = 0.1, 1, and 10, respectively. That is, for small β and
large h/l0 (very anisotropic rectangular array), critical upward
depinning occurs at the diagonal arc 3 in Fig. 9, whereas in the
rest of the parameter space the relevant process corresponds
to depinning of the transverse domain wall segment between
adjacent triangles in the same row (arc 1 in Fig. 9).

2. Downward propagation

The firs step 0 → 1 of the downward motion (Fig. 11)
is identical to the same step in the upward motion; hence
H D

1 = H U
1 . From 1 to 3, the arc 2 has the minimal radius,

which equals the distance between its center A and the vertex
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FIG. 11. (Color online) Downward motion of a kink in an elastic
wall (red online).

V1, (h + ht ) sin θ . However, point B can lie below or above
the side of the triangle. In the firs case, which occurs if θ >

45◦, the critical fiel is given by the radius of arc 3, (h +
ht )/(2 cos θ ). The second case occurs when θ < 45◦ − β and
then the minimum radius, h/[2 cos(β + θ ) cos β], occurs when
point B is at the vertex of the triangle. The fiel to reach arc 3
can be written as

H D
3 = σ

2h

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 cos(β + θ ) cos β, if θ < 45◦ − β,

1
[tan β/ tan θ + 1] sin θ

, if 45◦ − β < θ < 45◦,

2 cos θ

tan β/ tan θ + 1
, if θ > 45◦.

(23)

Finally, the radius of the diagonal arc 4 is

r4 = 1
2

√(
h + 2l0b + b2

4h

)2

+ l2
0 , (24)

yielding

H D
4 = σ

2r4

= σ

2h

(
2√

(l0/h)2 + (1 + l0/h tan β + tan2 β)2

)
(25)

and

H D = max
{
H U

1 ,H D
3 ,H D

4
}
. (26)

Figure 10 shows the calculated HD, normalized by the scale
factor σ/2h, as a function of β for θ = 45◦ and different values
of the ratio h/l0 = 10, 1, and 0.1. For large β, HD is given by
H D

1 , i.e., depinning of the transverse horizontal wall segment,
but as β decreases H D

3 and H D
4 become more relevant. In

particular, for large h/l0, H D
4 dominates the behavior in a wide

β range. The result is that, in the low-β range, HD is much
larger than HU, but above a certain threshold β0 both field

become equal (HD = HU) (for example, for h/l0 = 1, β0 =
45◦). Thus, for β < β0, upward kink propagation is easier
than downward propagation so that when an alternating fiel
of peak intensity H , with HU < H < HD, is applied to the
kinked wall, it will have a net backward motion, i.e., opposite
to the behavior observed in the previous section on fla wall
propagations. On the other hand, for β > β0, HD = HU, so
that kink propagation is not rectifie by the array of triangles.

In short, for θ = 45◦, as is the case in Fig. 10, whenever
kinked wall propagation is asymmetric, it results in an inverted
ratchet effect. This is actually the case for most of the parameter
space (β,θ,h/l0). For example, Fig. 12(a) shows the phase
diagram in the (β,θ ) plane for h/l0 = 1, in which only these
two regimes for domain wall propagation are found: inverted
ratchet (HD > HU) in the low-β region and symmetric kink
propagation in the right bottom corner of the diagram. This is
a direct consequence of the maximum condition imposed in
Eq. (26), as long as H U = H U

1 . However, at large h/l0, the
role of arc 3 in Fig. 9 in critical upward depinning becomes
more important and H U is given by H U

3 in a wider (β,θ )
region. In this case, HU can take any value in comparison
with HD , so that a direct ratchet effect for kinked wall motion
becomes possible. An example of this situation can be seen in
Fig. 12(b) for θ = 78◦ and h/l0 = 10. Thus, the phase diagram
for this very anisotropic array of triangles with h/l0 = 10
[Fig. 12(c)] becomes more complex: an inverse ratchet effect
(HD > HU) is found in a large (β,θ ) region in the left part
of the diagram, kink motion is symmetric in the right part of
the diagram (HD = HU), and, finall , a direct ratchet effect
(i.e., HD < HU) is found in two small regions close to the
upper part of the diagram, above θ = 65◦. These direct ratchet
regions shrink as h/l0 decreases and disappear for h/l0 < 2
due to the softening of the depinning processes of the diagonal
arcs in comparison with depinning of the horizontal transverse
segments.

C. Crossed ratchets

From the previous analysis, we have found a fundamental
difference between fla and kinked wall propagation modes:
HF/HB is always smaller than unity, implying that fla wall
propagation under an ac fiel will result in direct ratchet
effects; in contrast, HU/HD can take any value so that kinked
wall motion can result either in direct or inverse rectificatio
effects. Thus, the firs condition to design an asymmetric array
of defects that displays crossed-ratchet behavior is to choose
a point in the phase diagram of Fig. 12 in which HU/HD < 1.
Then, in order to observe clear crossed-ratchet effects that can
be useful for device applications, the interplay among the four
relevant critical field HF, HB, HD, and HU must be taken into
account.

In Fig. 13 we plot the four critical field as a function of
h/l0 between triangles, normalized by HB for β = 30◦ and θ =
30◦, which is similar to the geometry used in the experiments
of Ref. 3, where crossed-ratchet effects were observed both
experimentally and theoretically. The crossed-ratchet effect
is apparent from the figure HF is smaller than HB, but HU
(the upward motion of the kink drives the wall backward)
is larger than HD. Domain wall propagation in the array is
determined by the relationships among the four critical fields
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FIG. 12. (Color online) (a) Phase diagram in the (β,θ ) plane for the different regimes for kinked wall propagation for h/l0 = 1. (b) Critical
fields HD and HU, normalized by σ/2h, vs β calculated for θ = 78◦ for h/l0 = 10. (c) Same as in (a) for h/l0 = 10. Dotted lines in (a) and
(c) indicate the condition HD = HF, below which fla wall propagation modes compete with kinked wall propagation.

for each particular array geometry (i.e., each h/l0 value) when
a domain wall is pushed in the forward direction it will depin
as soon as the applied fiel reaches the lowest of HF and HD;
but, when a domain wall is pushed in the backward direction
it will depin as soon as the applied fiel reaches the lowest of
HB and HU. For large h/l0 (i.e., very rectangular array cell),
both HD and HU take much lower values than HB and HF,
implying that two well-separated fiel ranges can be defined
a low fiel domain wall propagation dominated by kink motion
(i.e., easier backward wall motion) and a high fiel domain wall
propagation dominated by fla wall motion (i.e., easier forward
wall motion). As h/l0 is reduced below ≈1, HD becomes
larger than HF, the interplay between fla and kinked wall
propagation modes becomes more complex, and the different
rectificatio effects cannot be clearly separated. Finally, for
very close triangle lines (h/l0 below 0.25), HU becomes larger
than HB and domain wall motion in the array is dominated by
fla wall propagation modes.

The condition HD = HF is plotted as a dotted line in
Figs. 12(a) and 12(c), so that the region for well-separated
kinked and fla propagation modes, i.e., clear crossed-ratchet
observation, lies above this line in the (β,θ ) plane. It can be

seen that as h/l0 increases the available parameter region for
crossed ratcheting becomes wider due to the different scaling
of the critical fields HF and HB scale as 1/l0, whereas HD
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FIG. 13. (Color online) Critical fields for θ = 30◦ and β = 30◦,
as a function of h/l0.
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and HU scale as 1/h. Thus, the design of arrays in the large-h
range (h  l0) appears as an important condition for a clear
observation of crossed-ratchet effects that can be of use in
device applications.

IV. CONCLUSIONS

In summary, the propagation of an elastic domain wall in
a two-dimensional medium has been analyzed in an arbitrary
geometry define by holes and sample boundaries. The local
depinning field for an anchored wall have been calculated
as a function of boundary shape in terms of the minimal
arc radius that satisfie the relevant orthogonality conditions.
Then, these results have been applied to the design of 2D arrays
of asymmetric holes with broken Y -axis reflectio symmetry
that can display crossed-ratchet effects (i.e., direct ratchet
for forward and backward fla wall propagation and inverted
ratchet for upward and downward kink propagation).

For a rectangular array of triangles, fla wall propagation
is found to be always asymmetric, resulting in a direct
ratchet effect controlled by triangle shape (angle θ ) and
intertriangle vertical distance (l0). Corrections due to finit
domain wall width and/or rounded triangle tips, which could
be relevant in actual patterned arrays of holes, produce a global
softening of the critical field but do not alter significantl
forward-backward asymmetry. On the other hand, upward and
downward kink propagation can display any asymmetry and
depends not only on triangle shape but also on the shape of
the horizonal intertriangle region (angle β) and on the array
vertical-horizontal anisotropy (h/l0). The array geometry
needed for the observation of crossed-ratchet effects has
been determined by considering the different wall propagation
modes relevant in the different points of the (β, θ ) plane.
Anisotropic arrays with large h/l0 are found to be optimum
for the observation of clear crossed-ratchet effects.
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APPENDIX A: FROM FIELD EQUATIONS TO ELASTIC
INTERFACES

In this Appendix we construct an approximate stationary
solution of Eq. (1) around a given curve in the plane, define
as [x(s),y(s)], with s a real number taking values in some
interval.

The interface of the desired solution is centered around
the line [x(s),y(s)], i.e., φ(x(s),y(s)) = 0, and the fiel
approaches the stable values ±1 as we move away from the
line. We then construct the solution using the signed distance

function, g(x,y), whose absolute value is the distance of a point
(x,y) to the line [x(s),y(s)]. Obviously, g(x(s),y(s)) = 0 for
all s. One less obvious property is that the gradient of the
distance function is unitary all over the plane. In other words,
the distance function obeys the eikonal equation

[∂xg(x,y)]2 + [∂yg(x,y)]2 = 1. (A1)

Now we choose the following form for the field φ(x,y) =
f (g(x,y)). Introducing this ansatz in the stationary φ4 equation
and making use of Eq. (A1), we get

cf ′′(g) + cf ′(g)∇2g + ε0[f (g) − f (g)3] = 0. (A2)

Our firs approximation consists of neglecting
f ′(g(x,y))∇2g(x,y) in the above equation. The Laplacian of
the distance function is inversely proportional to the curvature
radius of the line [x(s),y(s)]. Therefore, our approximation is
valid for interfaces with a curvature radius much larger than
its width. Then, Eq. (A2) reduces to

cf ′′(g(x,y))+ ε0[f (g(x,y))− f (g(x,y))3] = 0 (A3)

and the general solution reads f (z) = tanh[(z − z0)/w] with

w =
√

2c

ε0
. (A4)

The fiel φ is then given by

φ(x,y) = tanh
[
g(x,y)

w

]
, (A5)

where we have absorbed the constant z0 in the function g to
center the wall along the line [x(s),y(s)] where g vanishes.
Equation (A5) is well known as the fiel corresponding to a
single wall in the one-dimensional φ4 model.

To calculate the energy of the solution given by Eq. (A5),
it is convenient to use as coordinates the distance z to the
center of the interface and s, the parameter definin this center.
These new coordinates (s,z) are related with the Cartesian
coordinates (x,y) as [x(s,z),y(s,z)], obeying

g(x(s,z),y(s,z)) = z ∀s,z. (A6)

The z = 0 contour line is our initial curve [x(s),y(s)]. The
Jacobian of this change of coordinates can be calculated by
differentiating Eq. (A6) with respect to s and z, respectively,
yielding

dxdy =
√

ẋ2 + ẏ2ds dz, (A7)

where the dot denotes differentiation with respect to s. This is
in fact the product of the elementary length of the contour line√

ẋ2 + ẏ2ds times dz.
We can now calculate the energy of the wall by inserting

the solution (A5) in Eq. (2). With the change of variables
(x,y) → (s,z), the energy reduces to

E =
∫

dzL(z)
[
U (f (z))+ Hf (z) + c

2
f ′(z)2

]
, (A8)

where f (z) = tanh(z/w) and

L(z) =
∫

ds
√

ẋ(s,z)2 + ẏ(s,z)2 (A9)
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is the total length of the contour line g(x,y) = z in the
restricted geometry of the problem. In particular, L(0) is the
length of our starting curve [x(s),y(s)] definin the center of
the interface. If the interface is narrow, we can approximate
L(z) � L(0) for those z where U (f (z)) is significantl
different from zero, i.e., around the center of the interface.
Finally, the energy due to the external fiel H can be estimated
by replacing f (z) by a step function 2θ(z) − 1 in the term
Hf (z). With these assumptions, the energy becomes

E = σL(0) − 2HA (A10)

where A is the area at one side of the center of the interface
[x(s),y(s)], and

σ =
∫ ∞

−∞

[
U (f (z))+ c

2
f ′(z)2

]
=

√
8ε0c

3
(A11)

is the energy of the interface per unit of length. These are the
expressions yielding (5) in the main text.

APPENDIX B: EQUILIBRIUM SHAPE

Our next step is to calculate the equilibrium profil of an
interface segment. The energy of an interface segment is a
function of both its shape and the location of its ends or contact
points. In order to fin the possible metastable states of the seg-
ment we need to minimize this energy with the constraint (8).

We describe the wall as a line given by y(x), anchored to
the border at points (x1,y1) on the left and (x2,y2) on the right
(see Fig. 14). The energy of the interface is given by

E =
∫ x2

x1

[σ
√

1 + y ′(x)2 − 2Hy(x)] dx, (B1)

and hence the Euler-Lagrange equation is

d

dx

y ′√
1 + (y ′)2

+ 2H

σ
= 0. (B2)

We have to solve this equation by imposing the orthogonality
condition at the contact points (which are otherwise free).

FIG. 14. (Color online) The elastic wall (red online) between two
boundaries (vertical black curves) is parametrized as y(x) to solve
the variational problem.

One integration of (B2) gives
y ′(x)√

1 + y ′(x)2
= −x − x0

r
, (B3)

where x0 is a constant and r = σ/(2H ). From (B3) we get

y ′(x) = ± x − x0√
r2 − (x − x0)2

, (B4)

and a second integration yields

y(x) ±
√

r2 − (x − x0)2 = y0, (B5)

which, written as (x − x0)2 + (y − y0)2 = r2, reveals itself as
the arc of a circumference of radius r and center (x0,y0).
This is in fact the Laplace law in two dimensions, relating the
pressure difference to the local curvature of an elastic interface
at equilibrium. It is however important to notice that this
equilibrium shape is independent of the boundary conditions.
We can therefore impose these conditions by looking for
an arc of radius r which intersects orthogonally with the
two boundaries, as we do in Sec. II C using basic geometric
arguments and in Sec. II D in an analytical manner.
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