224 research outputs found
7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task
The subthalamic nucleus (STN) is a small, subcortical brain structure. It is a target for deep brain stimulation, an invasive treatment that reduces motor symptoms of Parkinson’s disease. Side effects of DBS are commonly explained using the tripartite model of STN organization, which proposes three functionally distinct subregions in the STN specialized in cognitive, limbic, and motor processing. However, evidence for the tripartite model exclusively comes from anatomical studies and functional studies using clinical patients. Here, we provide the first experimental tests of the tripartite model in healthy volunteers using ultra-high field 7 Tesla (T) functional magnetic resonance imaging (fMRI). Thirty-four participants performed a random-dot motion decision-making task with a difficulty manipulation and a choice payoff manipulation aimed to differentially affect cognitive and limbic networks. Moreover, participants responded with their left and right index finger, differentially affecting motor networks. We analysed BOLD signal in three subregions of the STN along the dorsolateral-ventromedial axis, identified using manually delineated high resolution anatomical images and based on a previously published atlas. Using these paradigms, all segments responded equally to the experimental manipulations, and the tasks did not provide evidence for the tripartite model
Methodological considerations for neuroimaging in deep brain stimulation of the subthalamic nucleus in Parkinson’s disease patients
Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinson’s disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal. These negative responses to treatment can partly be attributed to suboptimal pre-operative planning procedures via direct targeting through low-field and low-resolution magnetic resonance imaging (MRI). One solution for increasing the success and efficacy of DBS is to optimize preoperative planning procedures via sophisticated neuroimaging techniques such as high-resolution MRI and higher field strengths to improve visualization of DBS targets and vasculature. We discuss targeting approaches, MRI acquisition, parameters, and post-acquisition analyses. Additionally, we highlight a number of approaches including the use of ultra-high field (UHF) MRI to overcome limitations of standard settings. There is a trade-off between spatial resolution, motion artifacts, and acquisition time, which could potentially be dissolved through the use of UHF-MRI. Image registration, correction, and post-processing techniques may require combined expertise of traditional radiologists, clinicians, and fundamental researchers. The optimization of pre-operative planning with MRI can therefore be best achieved through direct collaboration between researchers and clinicians
Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI
The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo. Here we provide a detailed account of 17 prominent subcortical structures and ventricles, describing their approximate iron and myelin contents, morphometry, and their age-related changes across the normal adult lifespan. The results provide compelling insights into the heterogeneity and intricate age-related alterations of these structures. They also show that the locations of many structures shift across the lifespan, which is of direct relevance for the use of standard magnetic resonance imaging atlases. The results further our understanding of subcortical morphometry and neuroimaging properties, and of normal aging processes which ultimately can improve our understanding of neurodegeneration
Variability in subthalamic nucleus targeting for deep brain stimulation with 3 and 7 Tesla magnetic resonance imaging
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.5 or 3 Tesla (T) is used for targeting. Ultra-high-field MRI (7 T and above) can obtain superior anatomical information and might therefore be better suited for targeting. This study aims to test whether optimized 7 T imaging protocols result in less variable targeting of the STN for DBS compared to clinically utilized 3 T images. Three DBS-experienced neurosurgeons determined the optimal STN DBS target site on three repetitions of 3 T-T2, 7 T-T2*, 7 T-R2* and 7 T-QSM images for five PD patients. The distance in millimetres between the three repetitive coordinates was used as an index of targeting variability and was compared between field strength, MRI contrast and repetition with a Bayesian ANOVA. Further, the target coordinates were registered to MNI space, and anatomical coordinates were compared between field strength, MRI contrast and repetition using a Bayesian ANOVA. The results indicate that the neurosurgeons are stable in selecting the DBS target site across MRI field strength, MRI contrast and repetitions. The analysis of the coordinates in MNI space however revealed that the actual selected location of the electrode is seemingly more ventral when using the 3 T scan compared to the 7 T scans
A high-resolution multi-shell 3T diffusion magnetic resonance imaging dataset as part of the Amsterdam Ultra-high field adult lifespan database (AHEAD)
In order to further our understanding of brain function and the underlying networks, more advanced diffusion weighted magnetic resonance imaging (DWI MRI) data are essential. Here we present freely available high-resolution multi-shell multi-directional 3 Tesla (T) DWI MRI data as part of the 'Amsterdam Ultra-high field adult lifespan database' (AHEAD). The 3T DWI AHEAD dataset include 1.28mm isotropic whole brain DWI data of 49 healthy adult participants between 18 and 90 years old. The acquired data include DWIs at three non-zero b-values (48 directions, b-value 700 s/mm2; 56 directions, b-value 1000 s/mm2; 64 directions, b-value 1600 s/mm2) including a total of twelve volumes with a b-value of 0 s/mm2 (b0 volumes). In addition, eight b0 volumes with a reversed phase encoding direction were acquired to correct for distortions. To facilitate future use, the DWI data have been denoised, corrected for eddy currents, susceptibility-induced off-resonance field distortions, bias fields, and are skull stripped
Святкування 300-річчя "возз'єднання" України з Росією як прояв національної політики в СРСР
У статті аналізується роль «Тез про 300-річчя возз’єднання України з Росією (1654 – 1954 рр.)» як вияву
національної політики в радянській країні і вплив цього документа на спрямування наукових пошуків
вітчизняних вчених.В статье анализируется роль «Тезисов о 300-летии воссоединения Украины с Россией (1654 – 1954 гг.)»
как проявления национальной политики в советской стране и влияние этого документа на направление
научных поисков отечественных учёных.The article deals with the idea of «The Theses on the 300
th
Anniversary of Reunification of Ukraine with Russia
(1654 – 1954)» as a manifestation of national policy in the Soviet country and the influence of the document on
the direction of scientific search of the Ukrainian scholars
- …