1,227 research outputs found

    A case for adaptive sub-carrier level power allocation in OFDMA networks

    Get PDF
    In today's OFDMA networks, the transmission power is typically fixed and the same for all the sub-carriers that compose a channel. The sub-carriers though, experience different degrees of fading and thus, the received power is different for different sub-carriers; while some frequencies experience deep fades, others are relatively unaffected. In this paper, we make a case of redistributing the power across the sub-carriers (subject to a fixed power budget constraint) to better cope with this frequency selectivity. Specifically, we design a joint power and rate adaptation scheme (called JPRA for short) wherein power redistribution is combined with sub-carrier level rate adaptation to yield significant throughput benefits. We further consider two variants of JPRA: (a) JPRA-CR where, the power is redistributed across sub-carriers so as to support a maximum common rate (CR) across sub-carriers and (b) JPRA-MT where, the goal is to redistribute power such that the transmission time of a packet is minimized. While the first variant decreases transceiver complexity and is simpler, the second is geared towards achieving the maximum throughput possible. We implement both variants of JPRA on our WARP radio testbed. Our extensive experiments demonstrate that our scheme provides a 35% improvement in total network throughput in testbed experiments compared to FARA, a scheme where only sub-carrier level rate adaptation is used. We also perform simulations to demonstrate the efficacy of JPRA in larger scale networks. © 2012 ACM

    Generalized Shifts on Cartesian Products

    Get PDF
    It is proved that if E, F are infinite dimensional strictly convex Banach spaces totally incomparable in a restricted sense, then the Cartesian product E×F with the sum or sup norm does not admit a forward shift. As a corollary it is deduced that there are no backward or forward shifts on the Cartesian product`p1×`p2,1\u3c p16=p2\u3c∞, with the supremum norm thus settling a problem left open in Rajagopalan and Sundaresan in J. Analysis 7 (1999(, 75-81 and also a problem stated as unsolved in Rassias and Sundaresan

    Can a gravitational wave and a magnetic monopole coexist?

    Full text link
    We investigate the behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time. We find that the even parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole provided that the gravitational wave is constant in the fifth direction. We conclude that a gravitational wave and a U(1) magnetic monopole do not coexist in five dimensional Kaluza-Klein spacetime.Comment: 10 pages, LaTeX. To appear in Modern Physics Letters

    Synthesis, characterization and antimitotic activity of N-benzyl piperidin 4-one oxime

    Get PDF
    The aim of this study was to synthesize, characterization and antimitotic activity of N-Benzyl piperidin 4-one oxime derivative. The synthesized compound was characterized by IR, 13C and 1H NMR spectral studies. The synthesized compound was subjected to antimitotic studies of alliumcepa root meristamatic cells. The mitotic activity was observed in 3 different concentrations of N-Benzyl piperidin 4-one oxime. Our findings support the reported therapeutic use of this compound as a antimitotic or anticancer agent in the Indian system of medicine. Keywords: N-Benzyl piperidin 4-one oxime, meristamatic cells, mitotic index

    Does gravitational wave propagate in the five dimensional space-time with Kaluza-Klein monopole?

    Get PDF
    The behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time is investigated. The fact that the odd parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole is found provided that the gravitational wave is constant in the fifth direction.Comment: 10 @ages, LATE

    Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Get PDF
    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    2-{Hy­droxy[1-(4-meth­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]meth­yl}acrylonitrile

    Get PDF
    In the title compound, C20H18N2O3, the β-lactam ring is essentially planar, having a maximum deviation of 0.0291 (15) Å for the N atom, and perpendicular to the phenyl ring [dihedral angle = 85.55 (11)°]. The carbonitrile side chain is almost linear, the C—C—N angle being 176.8 (2)°. The crystal packing is stabilized by inter­molecular O—H⋯O and C—H⋯O inter­actions

    Hadronic Vacuum Polarization and the Lamb Shift

    Get PDF
    Recent improvements in the determination of the running of the fine-structure constant also allow an update of the hadronic vacuum-polarization contribution to the Lamb shift. We find a shift of -3.40(7) kHz to the 1S level of hydrogen. We also comment on the contribution of this effect to the determination by elastic electron scattering of the r.m.s. radii of nuclei.Comment: 7 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty require
    corecore