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GENERALIZED SHIFTS ON CARTESIAN PRODUCTS

M. RAJAGOPALAN AND K. SUNDARESAN

It is proved that ifE/, F' are infinite dimensional strictly convex Banach spaces totally incom-
parable in a restricted sense, then the Cartesian prétuct’ with the sum or sup norm does
not admit a forward shift. As a corollary it is deduced that there are no backward or forward
shifts on the Cartesian produ6f, x /,,, 1 < p1 # p2 < oo, with the supremum norm thus
settling a problem left open in Rajagopalan and SundaresanAnalysis7(1999), 75-81 and
also a problem stated as unsolved in Rassias and Sundadeddath. Anal. Applications
(260)(2001), 36-45.

Key words : Generalized shifts; backward shifts; forward shifts; Cartesian products; sub
spaces; Banach spaces; strictly convex; totally incomparable; isometrically incomparable;
reflexive Banach spaces

1. INTRODUCTION

In this section the basic definitions are recalled and various notations are established. In this paper
all Banach spaces under consideration are infinite dimensional unless otherwise stated and all sub-
spaces are closed. We adhere for the terminology concerning Banach spaces to the book on Normed
Linear Spaces by Day, [1]. All isometries in this paper are lineak' 1§ a Banach space the set

of extreme points of the unit ball df is noted ast'zt E. If £, F are Banach spaces the sum and
supremum norm on the Cartesian prodBck F are respectively denoted ljy||;, and|| ||oc. TwoO



Banachspaces are said to be isometrically incomparable if no infinite dimensional subspace of ei-
ther of the spaces is isometric with a subspace of the other. Two Banach gépdcese said to be
Quasi isometrically incomparable # is not isometric withF', and no subspace @f(F') of codim

1 is isometric withZ’'(E). The terminology is in part motivated by the term "totally incomparable”
introduced by Haskell Rosenthal in [10]. As examples of spaces which are isometrically incompa-
rable we mention any two distinct Banach spaces in thé&sét < p < oo} U {co}, Pelczynski [6].

On the other hand the spacgsandC'[0, 1] are not isometrically incomparable but they are quasi
isometrically incomparable.

A continuous linear operator on a Banach spAte— F is said to be a generalized forward
shift as defined in Holub [5] if (1) is an isometry orE onto a subspac&/ of E of codim 1, and
2 ﬂ RangeT™ = {0}. Further adhering to the terminology in [4],: £ — F is said to be a

k>1
generalized backward shift if (1 erT" is one dimensional and (1)_} KerTX is dense inZ and

k>1
(3) the canonical extensidh of 7T to the factor spacé&|KerT defined by

T(x+KerT)=T(x)forallz € £

is an isometry. The linear transformatidfisT’ on sequences defined by
T(z)=y,n=0,y2 =21, ... Yp = T—1,k > 2

and
T/(f) =Y, Y1 = T2,Y2 = T3, ... Yp = Tpy1,k > 1
where x = {z,},and y = {y,}

are respectively generalized forward and backward shifts when restricted to sequence spaces

< p < o0, andcy. It is evident from the definitions that there are no generalized forward shifts
on finite dimensional Banach spaces while if there is a generalized backward shift on a Banach
space it is separable. Thus there is no generalized backward sliift.ohhe transformatiofi” on
sequences defined above is a generalized forward shift on the BanacH gpa€éerther we note

that if £/ is infinite dimensional, a backward shift dhis surjective, [R$]. In this paper we call
generalized forward shifts and generalized backward shifts simply as forward shifts and backward
shifts respectively.

If Eis a Banach space thdn|rz denotes the norm on the spate

Holub in [5] raised the fundamental problem of the existence of forward and backward shifts on
various Banach spaces. Some of these problems have been settled, see the recent papers of Gutek
et al. [3, 4], Ragagopalan and Sundaresan [7] and Themistocles Rassias and Sundaresan [9]. The
following problems naturally arise in the context of problems stated as unsolved in [5] and have
been stated as unsolved in [8] and [9]. Are there backward or foward shifts on the product spaces



lp, % £y, equipped with sup norm if < p; # pa < oo. We settle the problem completely in this
paper. In the process interesting geometric properties of Cartesian products of quasi isometrically
incomparable strictly convex spaces are obtained.

The following definitions are useful in the discussion to follow.Elf F* are Banach spaces, a
subspacé/ of E x F'is said to be factorable (a rectangle) if there are subspbges £ and M,
of F' such thatM = M; x Ms. AnisometryT on the producE x F equipped with a norm is said
to be factorable if there are isometri€s: £ — E,and1; : F' — F suchthafl’ =T x Ty i.e.
T(z,y) = (Thz, Try).

The section is concluded with the following proposition, stated here for convenience of refer-
ence.

Propositionl — Let F, F' be any two Banach spaces, akid= F x F. Then

(1) If the norm onX is || ||;, then
Ext X ={(z,y)|x € Ext Eandy=0or z =0 and y € Ext F'}.
(2) If the norm onX is || ||, then
Ext X ={(z,y)| x € Ext E, and y € Ext F'}.

The results follow from the definition of an extreme point of a convex set.

2. SHIFTS ON CARTESIAN PRODUCTS

It is proved in this section that there are no forward or backward shifts on the Cartesian product
E x F with either|| ||; or || ||« if £ and F" are quasi isometrically incomparable strictly convex
Banach spaces. From this itis deduced that the product gpagé,,,, 1 < p1 # p2 < oo with sup

norm does not admit either a forward or a backward shift. The proofs for the cag@s«af’, || ||1)

and(E x F,|| ||«) are very similar. For this reason the proof for the ciag is presented. In the

rest of this paper the norm ai x F' is the sum norm| ||; unless otherwise specified. The main
theorem is established after proving several useful results.

Lemma2 — If M is a subspace of x F, and(z,0) € M,(0,y) € M,z # 0 # y, and
|lzlle + |lyl|lF = 1 then(z,y) ¢ ExtM.

PrRoOOF: Clearly (z,y) € M, and||(z,y)|| = 1. However(z,y) = ||z|lg <m,0> +
z|E

ly|l 7 (O, \?jlp) Hence(z,y) ¢ ExtM, since||z| g + ||ly||lr = 1.



Theorem3 — Let E, F' be two strictly convex Banach spaces dhte an isometry oy x F'
into £ x F with rangeT = M, a subspace of Codim 1. Then for alle FE, (1)T(x,0) €
(E x{0}) U0} x F). A similar inclusion holds fof’(0, y) for all y € F.

PrROOF: LetT, M, E, F be as in the theorem. From the propertyldf there are linear func-
tionalsf, andg, f € E*, andg € F*, such that

M = {(a,b)|a € E,b € F, suchthat f(a)+ g(b) = 0}.

It is enough to prove (1) for alt € E,||z|zp = 1. With such a choice of, let T'(z,0)
= (z1,y1). Since(z,0) € Ext(E x F),(z1,y1) € Ext M. To complete proof of (1) enough
to verifyzy = 0ory; = 0. Letxzy # 0, y1 # 0. Since(xz1,y1) € M, f(x1) + g(y1) = 0. If
f(z1) = 0, equivalentlyg(y1) = 0, (x1,0) € M, and(0,y;) € M, and it follows from Lemma 2,
that(x1,y1) ¢ Ext M, a contradiction. Thug(x;) # 0, andg(y;) # 0.

Now choose &y € F.|y|llr = 1. LetT(0,y) = (x2,y2). Then(za,y2) € ExtM, since
(0,y) € Ext(E x F). Since||(z,y)|| = 2, it follows that

(D) 2=|T(z,y)| = (@1 +z2,91 + )| = lz1+ 22l + [ly1 + v2llF
< zille + llz2lle + llyillr + lly2llF = 2.

Hence

|21+ z2llE = |71]lE + [|22]|E

and
ly1 +wellr = llyille + lly2ll

Since|| ||g, || |7 are strictly convex, assuming: # 0, andys # 0, it follows that there are
positive numberg, ands such thatee = tx1, andys = sy;. Since(xa,y2) € M, f(z2) + g(y2) =
tf(xz1) + sg(y1) = 0. Sincef(x1) + g(y1) = 0, and f(x1) # O it follows thatt = s. Thus
(x2,y2) = t(z1,51). Since||(z2,y2)l = (@1, 91) = 1, t = 1, and(z2,52) = (z1,91), @
contradiction sincéz, 0) # (0, y).

In casers =0, (0,y2) € ExtM, andg(y2) = 0. However the inequality and strict convexity
of Fimply yo = syi, for somes > 0. Thusg(y;) = 0, contradicting thag(y;) # 0. Similarly the
casey, = 0, leads to a contradiction. Thus for alle E, (1) holds. A similar argument leads to the
inclusion

T(0,y) € (E x {o}) [ J({0} x F)

forall y € F, as desired.

Corollary4 — If T, M, E, andF' are as in Theorem 3 thetixt M C Ext(E x F).



PROOF: If (z1,y1) € Ext M, it follows from proposition 1, thatz;,y1) = T'(x,0) or
(z1,y1) = T(0,y). Hence from theorem 3;; = 0 ory; = 0. Hence(x1,y1) € Ext(E x F).

The theorem 6 below reveals the structureldf if T, M, E, F' are as in theorem 3. Before
proceeding to the theorem we state a useful lemma.

Lemmab — If E, F are strictly convex Banach spaces avds a subspace of x F' of codim
1, thenifx € E, andy € F,z # 0,y # 0, are such thatz,0) ¢ M,(0,y) ¢ M, (z,y) €
M, ||(z,y)|| = 1, then(z,y) € Ext M.

PROOF: Since the proofis similar to the proof of Theorem 3, a proof sketch is provided omitting
details.

Choosing the functionalg, g as in the proof of Theorem 3, let if possible

) (,9) = 5 o) + (@2,

where(x;,y;) are inM,i = 1,2 and each of unit norm. Assuming # 0,y; # 0,7 = 1,2 and
proceeding as in the proof of Theorem 3, invoking strict convexitfafnd F' we find that there
are positive numbers ands such thatey = txq, andys = sy;.

In casef(z1) = 0, it follows that f(x3) = 0 implying f(x) = 0 as seen from equation (2).
Thus(z,0) € M, a contradiction on the choice of Thusf(z;) # 0 and f(z2) # 0. Similarly it

is seen thay(y,) # 0 andg(y2) # 0. Sincef(x1) + g(y1) = f(xz2) + g(y2) = 0 arguing as in the
proof of Theorem 3 it follows that = s = 1. Hence(x1,y1) = (22, y2) and(z,y) € ExtM.

Theorem6 — If E, F' are strictly convex Banach spaces ahd: £ x FF — E x F'is an
isometry with rangél/, a subspace oF x F' of Codim 1, thenV/ is a rectangle. More precisely
there is a subspacgy of E of Codim 1 such thadl = Ey x F or there is a subspacg, of F' of
Codim 1 such thal/ = F x Fy.

PROOF: SinceM is a proper subspace 6fx I, there iseithera € E,x #A0oray € F,y # 0
such that(z,0) ¢ M or (0,y) ¢ M. Let(z,0) ¢ M for somex € E. If possible let for some
y € F,(0,y) ¢ M. Thusf(z) # 0, andg(y) # 0 where f, g are functionals inE* and F
respectively such that

M = {(a,b)|f(a) + g(b) = 0}.

Sincef(z) # 0, andg(y) # 0, there are nonzero numbeist, such tha(t;x, toy) € M. Now
setting||(t1z, t2y)|| = A, since(tiz,0) ¢ M, (0,tay) ¢ M, and||(4E, 28)| = 1, it follows from
lemma 5, tha(tlj’“, %y) € FxtM. Thus either: = 0 or y = 0 as a consequence of corollary 4, and
proposition 1, a contradiction. Hence(if, 0) ¢ M, then for everyy € F, (0,y) € M.

Let By = {z!| 2! € E,(2,0) € M}. Ey is a subspace o, andx chosen in the previous
paragraph, is not i&y. Let us note that ifxz1,y;) € M, then sincg0,y;) € M, it follows that



(z1,0) € M. From this it is readily verified thal/ = E, x F. Further ifz, andz; are not
in Ey then f(x) # 0 and f(z1) # 0. Thus there is & such thatf(z;) — Af(x) = 0. Hence
r1 — A\xg € Ey. ThusEj is of codim 1 inE, as desired.

Similarly if for somey in F, (0,y) ¢ M, it follows thatM = E x Fy, Fy a subspace of" of
codim 1. This completes the proof of the theorem.

Theorem7 — Let £ and F' be two infinite dimensional quasi isometrically incomparable strictly
convex Banach spaces af{ a subspace of of codim 1 §, a subspace of’ of codim 1). IfT
is an isometry ont x F onto By x F, thenT is factorable. A similar result holds iy x F'is
replaced byF x Fy.

PROOF: LetT : E x F — FEy x F be a linear isometry with randgg all of Ey x F. Let
x € E,||z||p = 1. ThenT'(z,0) is an extreme point oy x F. Thus there is a; € Ej of unit
norm or ay; € F of unit norm such thal'(z, 0) is either(z1,0) or (0,y1). * If T'(x,0) = (0,y1) it
is claimed that the rangE| E x {0} is a subspace dfo} x F. If not there arec!, x1 in E of unit
norm such thaf’(x!,0) = (z},0). From our choice of andy; it follows that

lz + 2|5 = lI(z1, y) ]| = 2.

Hence strict convexity ofz impliesz = z!. Thus(0,y1) = (x1,0) a contradiction since
xi # 0. ** Thus the range ofl'| E x {0} is a subspace of0} x F. In fact it is all of {0} x F.
Otherwise sincg0} x F is a subspace of the rangeBf there is /! € F of unit norm such that
for somey € F of unit norm,T(0,y) = (0,y'). This observation together with (*) again imply
y' = y1, which is proved by using strict convexity &fand proceeding as in the proof of (**). Thus
(z,0) = (0,y) a contradiction. Henc& mapsE x {0} onto{0} x F'. ThusF is isometric withE
contradictingE’ and F' are quasi isometrically incomparable.

The above observations prove that the assumption (*) is false i.e. Radge {0} is a subspace
of E x {0}. Hence the hypothesis on the rangéamplies rangel’| E x {0} = Ey x {0}.

Further sincd is a linear isometry oy x F' onto Ey x F', and the rang&'| Ex {0} = Eyx {0},
it is deduced using Proposition 1, that Rafgg0} x F' = {0} x F.

To complete the proof thaf’ is factorable, letl; : E — FE, T, : ' — F be defined
by Ty (z) = 2, if T(x,0) = (2%,0), andTx(y) = y' if T(0,y) = (0,y'). ThenTy, T, are linear
isometries respectively afi onto Ey, and onF’ onto F'. The remarks on the ranges of the restrictions
of T" above and the definitions @f;, 7, imply thatT = T} x Ty i.e. T(z,y) = (Tiz,Thy)
completing the proof thaf is factorable.

If the range ofl" is E' x Fy, arguing as in the preceding case, it is proved That factorable.



Theorem8 — If E and F' are quasi isometrically incomparable strictly convex Banach spaces,
then there is no forward shift of® x F, || ||).

PrRoOOF: If T is a forward shift onF x F, it follows from the definition of a forward shift and
Theorem 6, that either there is a subspagef E of codim 1 such that the range 6fis Fy x F
or else there is a subspaég of F' of codim 1, such that the range @fis £ x Fy. Assuming
the first alternative and applying theorem 7, and adopting notation introduced in the theorem, it
follows that the linear isometryy is a linear isometry o onto Ey, and7, : ' — Fis a
surjective linear isometry. Since the rarije = F foralln > 1, andT™ = T7* x T3 it follows that
ﬂ RangeT™ D {0} x F contradicting thaf” is a forward shift.
n>1

In case rangd’ = E x Fj, a repetition of the above argument leads again to a contradiction,
completing the proof of the Theorem.

In passing we note that as stated in the introduction all the results in this section concerning
E x F equipped with the sum norin||; have verbatim analogues whern|; is replaced by| ||oc-
In particular Theorem 8 holds f ||; is replaced byj| ||.. Thus we have the following theorem
stated for convenience of reference.

Theorem9 — If E, F' are quasi isometrically incomparable strictly convex spaces then the
product spacer x F with norm|| ||1(|| ||e) does not admit a forward shift

We conclude the paper answering the problem of existence of backward or forward shifts on
the product spacé, x ¢,,,1 < p; # p2 < oo with the sup norm. We note that the spaces
ly lp,, 1 < p1 # p2 < oo are quasi isometrically incomparable since they are isometrically
incomparable as noted in section 1. Furthespaces are strictly convexif< p < oc.

Before proceeding to the final theorem we note that a separable reflexive Banach suhuis
a forward shift if and only if the dual spade* admits a backward shift, [TRS].

Theoreml10—If 1 < p; # p2 < oo then the Banach spacés, x ¢, admit neither a forward
nor a backward shift when equipped with|1 (|| ||co)-

ProoOF : If follows at once that the spadg, x £,,,1 < p1 # pa < oo With || ||1(]] ||)
does not admit a forward shift from theorem 9 since these spaceh, are strictly convex and
quasi isometrically incomparable. To prove that the spdges /,,,1 < p1 # p2 < oo with
Il [l1(]|] ]lco) do not admit a backward shift we simply note that these spaces are separable reflexive
Banach spaces such that their duals do not admit a forward shift and apply the duality result stated
earlier here. This completes the proof.

Itis natural to inquire the existence of shifts@nx ¢,,. We note that iff" is a forward (backward)
shift on a Banach spade and if 7} is the operator oi® x £ — FE x E, defined byl (z,y) =



(y, Tx), thenT) is a forward (backward) shift o x E with || ||; or || ||«. In fact it follows

from the above observation that#f and F' are isometric Banach spacds,admitting a forward
(backward) shift, then the product spakex F' admits a forward (backward) shift, with||; or

|l [l«c @s the norm on the spade x F, by simply noting the easily verified fact that isometries
preserve the property that a Banach space has a forward (backward) shift. In particular it follows
that?, x ¢, with || ||; or|| ||.c @dmits forward (backward) shifts If < p < oc.

In conclusion it is noted that similar results are obtained for the produests’, whereE = ¢,
1 < p < oo andF is eithercy or ¢1. Since the proofs for these cases are significantly different
from the proofs of the results in this paper and further vary from case to case these are discussed in
a separate paper.

The results in this paper were presented by the second author in an invited lecture at the Inter-
national Conference on Infinite Dimensional Analysis, held at Kent State University, Kent, Ohio,
February 1-9, 2005, honoring Professors Richard Aron, and Sean Dineen on their sixtieth birthday.
The second author further takes the opportunity to express his gratitude to Professor Pelczynski for
his very interesting remarks on some of the results in the paper.
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