
Cleveland State University
EngagedScholarship@CSU

Mathematics Faculty Publications Mathematics Department

6-1-2009

Generalized Shifts on Cartesian Products
M. Rajagopalan
Tennessee State University

K. Sundaresan
Cleveland State University, S.KONDAGUNTA@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scimath_facpub

Part of the Mathematics Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/s11538-011-9662-4

This Article is brought to you for free and open access by the Mathematics Department at EngagedScholarship@CSU. It has been accepted for
inclusion in Mathematics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact
library.es@csuohio.edu.

Repository Citation
Rajagopalan, M. and Sundaresan, K., "Generalized Shifts on Cartesian Products" (2009). Mathematics Faculty Publications. 193.
https://engagedscholarship.csuohio.edu/scimath_facpub/193

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216951519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath_facpub?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath_facpub?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/scimath_facpub/193?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


GENERALIZED SHIFTS ON CARTESIAN PRODUCTS

M. RAJAGOPALAN AND K. SUNDARESAN

It is proved that ifE, F are infinite dimensional strictly convex Banach spaces totally incom-

parable in a restricted sense, then the Cartesian productE × F with the sum or sup norm does

not admit a forward shift. As a corollary it is deduced that there are no backward or forward

shifts on the Cartesian product`p1 × `p2 , 1 < p1 6= p2 < ∞, with the supremum norm thus

settling a problem left open in Rajagopalan and Sundaresan inJ. Analysis7(1999), 75-81 and

also a problem stated as unsolved in Rassias and Sundaresan,J. Math. Anal. Applications

(260)(2001), 36-45.

Key words : Generalized shifts; backward shifts; forward shifts; Cartesian products; sub
spaces; Banach spaces; strictly convex; totally incomparable; isometrically incomparable;
reflexive Banach spaces

1. INTRODUCTION

In this section the basic definitions are recalled and various notations are established. In this paper

all Banach spaces under consideration are infinite dimensional unless otherwise stated and all sub-

spaces are closed. We adhere for the terminology concerning Banach spaces to the book on Normed

Linear Spaces by Day, [1]. All isometries in this paper are linear. IfE is a Banach space the set

of extreme points of the unit ball ofE is noted asExt E. If E, F are Banach spaces the sum and

supremum norm on the Cartesian productE × F are respectively denoted by‖ ‖1, and‖ ‖∞. Two



Banachspaces are said to be isometrically incomparable if no infinite dimensional subspace of ei-

ther of the spaces is isometric with a subspace of the other. Two Banach spacesE,F are said to be

Quasi isometrically incomparable ifE is not isometric withF , and no subspace ofE(F ) of codim

1 is isometric withF (E). The terminology is in part motivated by the term ”totally incomparable”

introduced by Haskell Rosenthal in [10]. As examples of spaces which are isometrically incompa-

rable we mention any two distinct Banach spaces in the set{`p|1 ≤ p < ∞}∪{c0}, Pelczynski [6].

On the other hand the spaces`2 andC[0, 1] are not isometrically incomparable but they are quasi

isometrically incomparable.

A continuous linear operator on a Banach spaceE −→ E is said to be a generalized forward

shift as defined in Holub [5] if (1)T is an isometry onE onto a subspaceM of E of codim 1, and

(2)
⋂

k≥1

RangeTK = {0}. Further adhering to the terminology in [5],T : E −→ E is said to be a

generalized backward shift if (1)KerT is one dimensional and (2)
⋃

k≥1

KerTK is dense inE and

(3) the canonical extension̂T of T to the factor spaceE|KerT defined by

T̂ (x + KerT ) = T (x) for all x ∈ E

is an isometry. The linear transformationsT, T ′ on sequences defined by

T (x) = y, y1 = 0, y2 = x1, . . . yk = xk−1, k ≥ 2

and

T ′(x) = y, y1 = x2, y2 = x3, . . . yk = xk+1, k ≥ 1

where x = {xn}, and y = {yn}
are respectively generalized forward and backward shifts when restricted to sequence spaces`p 1
≤ p < ∞, andc0. It is evident from the definitions that there are no generalized forward shifts

on finite dimensional Banach spaces while if there is a generalized backward shift on a Banach

space it is separable. Thus there is no generalized backward shift on`∞. The transformationT on

sequences defined above is a generalized forward shift on the Banach space`∞. Further we note

that if E is infinite dimensional, a backward shift onE is surjective, [RS1]. In this paper we call

generalized forward shifts and generalized backward shifts simply as forward shifts and backward

shifts respectively.

If E is a Banach space then‖ ‖E denotes the norm on the spaceE.

Holub in [5] raised the fundamental problem of the existence of forward and backward shifts on

various Banach spaces. Some of these problems have been settled, see the recent papers of Gutek

et al. [3, 4], Ragagopalan and Sundaresan [7] and Themistocles Rassias and Sundaresan [9]. The

following problems naturally arise in the context of problems stated as unsolved in [5] and have

been stated as unsolved in [8] and [9]. Are there backward or foward shifts on the product spaces



`p1 × `p2 equipped with sup norm if1 < p1 6= p2 < ∞. We settle the problem completely in this

paper. In the process interesting geometric properties of Cartesian products of quasi isometrically

incomparable strictly convex spaces are obtained.

The following definitions are useful in the discussion to follow. IfE,F are Banach spaces, a

subspaceM of E × F is said to be factorable (a rectangle) if there are subspacesM1 of E andM2

of F such thatM = M1 ×M2. An isometryT on the productE × F equipped with a norm is said

to be factorable if there are isometriesT1 : E −→ E, andT2 : F −→ F such thatT = T1 × T2 i.e.

T (x, y) = (T1x, T2y).

The section is concluded with the following proposition, stated here for convenience of refer-

ence.

Proposition1 — LetE, F be any two Banach spaces, andX = E × F . Then

(1) If the norm onX is ‖ ‖1, then

Ext X = {(x, y)| x ∈ Ext E and y = 0 or x = 0 and y ∈ Ext F}.

(2) If the norm onX is ‖ ‖∞, then

Ext X = {(x, y)| x ∈ Ext E, and y ∈ Ext F}.

The results follow from the definition of an extreme point of a convex set.

2. SHIFTS ON CARTESIAN PRODUCTS

It is proved in this section that there are no forward or backward shifts on the Cartesian product

E × F with either‖ ‖1 or ‖ ‖∞ if E andF are quasi isometrically incomparable strictly convex

Banach spaces. From this it is deduced that the product space`p1× `p2 , 1 < p1 6= p2 < ∞ with sup

norm does not admit either a forward or a backward shift. The proofs for the cases of(E×F, ‖ ‖1)
and(E × F, ‖ ‖∞) are very similar. For this reason the proof for the case‖ ‖1 is presented. In the

rest of this paper the norm onE × F is the sum norm‖ ‖1 unless otherwise specified. The main

theorem is established after proving several useful results.

Lemma2 — If M is a subspace ofE × F , and(x, 0) ∈ M, (0, y) ∈ M, x 6= 0 6= y, and

‖x‖E + ‖y‖F = 1 then(x, y) /∈ ExtM .

PROOF : Clearly (x, y) ∈ M , and‖(x, y)‖ = 1. However(x, y) = ‖x‖E

(
x

‖x‖E
, 0

)
+

‖y‖F

(
0,

y

‖y‖F

)
. Hence(x, y) /∈ ExtM , since‖x‖E + ‖y‖F = 1.



Theorem3 — Let E, F be two strictly convex Banach spaces andT be an isometry onE × F

into E × F with rangeT = M , a subspace of Codim 1. Then for allx ∈ E, (1)T (x, 0) ∈
(E × {0})⋃

({0} × F ). A similar inclusion holds forT (0, y) for all y ∈ F .

PROOF : Let T, M,E, F be as in the theorem. From the property ofM , there are linear func-

tionalsf , andg, f ∈ E∗, andg ∈ F ∗, such that

M = {(a, b)|a ∈ E, b ∈ F, suchthat f(a) + g(b) = 0}.

It is enough to prove (1) for allx ∈ E, ‖x‖E = 1. With such a choice ofx, let T (x, 0)
= (x1, y1). Since(x, 0) ∈ Ext(E × F ), (x1, y1) ∈ Ext M . To complete proof of (1) enough

to verify x1 = 0 or y1 = 0. Let x1 6= 0, y1 6= 0. Since(x1, y1) ∈ M, f(x1) + g(y1) = 0. If

f(x1) = 0, equivalentlyg(y1) = 0, (x1, 0) ∈ M , and(0, y1) ∈ M , and it follows from Lemma 2,

that(x1, y1) /∈ Ext M , a contradiction. Thusf(x1) 6= 0, andg(y1) 6= 0.

Now choose ay ∈ F, ‖y‖F = 1. Let T (0, y) = (x2, y2). Then(x2, y2) ∈ ExtM , since

(0, y) ∈ Ext(E × F ). Since‖(x, y)‖ = 2, it follows that

(I) 2 = ‖T (x, y)‖ = ‖(x1 + x2, y1 + y2)‖ = ‖x1 + x2‖E + ‖y1 + y2‖F

≤ ‖x1‖E + ‖x2‖E + ‖y1‖F + ‖y2‖F = 2.

Hence

‖x1 + x2‖E = ‖x1‖E + ‖x2‖E

and

‖y1 + y2‖F = ‖y1‖F + ‖y2‖F .

Since‖ ‖E , ‖ ‖F are strictly convex, assumingx2 6= 0, andy2 6= 0, it follows that there are

positive numberst, ands such thatx2 = tx1, andy2 = sy1. Since(x2, y2) ∈ M, f(x2) + g(y2) =
tf(x1) + sg(y1) = 0. Sincef(x1) + g(y1) = 0, andf(x1) 6= 0 it follows that t = s. Thus

(x2, y2) = t(x1, y1). Since‖(x2, y2)‖ = ‖(x1, y1)‖ = 1, t = 1, and (x2, y2) = (x1, y1), a

contradiction since(x, 0) 6= (0, y).

In casex2 = 0, (0, y2) ∈ ExtM , andg(y2) = 0. However the inequalityI and strict convexity

of F imply y2 = sy1, for somes > 0. Thusg(y1) = 0, contradicting thatg(y1) 6= 0. Similarly the

casey2 = 0, leads to a contradiction. Thus for allx ∈ E, (1) holds. A similar argument leads to the

inclusion

T (0, y) ∈ (E × {0})
⋃

({0} × F )

for all y ∈ F , as desired.

Corollary 4 — If T, M, E, andF are as in Theorem 3 thenExtM ⊂ Ext(E × F ).



PROOF : If (x1, y1) ∈ Ext M , it follows from proposition 1, that(x1, y1) = T (x, 0) or

(x1, y1) = T (0, y). Hence from theorem 3,x1 = 0 or y1 = 0. Hence(x1, y1) ∈ Ext(E × F ).

The theorem 6 below reveals the structure ofM , if T, M, E, F are as in theorem 3. Before

proceeding to the theorem we state a useful lemma.

Lemma5 — If E, F are strictly convex Banach spaces andM is a subspace ofE ×F of codim

1, then if x ∈ E, andy ∈ F, x 6= 0, y 6= 0, are such that(x, 0) /∈ M, (0, y) /∈ M, (x, y) ∈
M, ‖(x, y)‖ = 1, then(x, y) ∈ Ext M .

PROOF: Since the proof is similar to the proof of Theorem 3, a proof sketch is provided omitting

details.

Choosing the functionalsf, g as in the proof of Theorem 3, let if possible

(2) (x, y) =
1
2
{(x1, y1) + (x2, y2)},

where(xi, yi) are inM, i = 1, 2 and each of unit norm. Assumingxi 6= 0, yi 6= 0, i = 1, 2 and

proceeding as in the proof of Theorem 3, invoking strict convexity ofE andF we find that there

are positive numberst, ands such thatx2 = tx1, andy2 = sy1.

In casef(x1) = 0, it follows thatf(x2) = 0 implying f(x) = 0 as seen from equation (2).

Thus(x, 0) ∈ M , a contradiction on the choice ofx. Thusf(x1) 6= 0 andf(x2) 6= 0. Similarly it

is seen thatg(y1) 6= 0 andg(y2) 6= 0. Sincef(x1) + g(y1) = f(x2) + g(y2) = 0 arguing as in the

proof of Theorem 3 it follows thatt = s = 1. Hence(x1, y1) = (x2, y2) and(x, y) ∈ ExtM .

Theorem6 — If E, F are strictly convex Banach spaces andT : E × F −→ E × F is an

isometry with rangeM , a subspace ofE × F of Codim 1, thenM is a rectangle. More precisely

there is a subspaceE0 of E of Codim 1 such thatM = E0 × F or there is a subspaceF0 of F of

Codim 1 such thatM = E × F0.

PROOF: SinceM is a proper subspace ofE×F , there is either ax ∈ E, x 6= 0 or ay ∈ F, y 6= 0
such that(x, 0) /∈ M or (0, y) /∈ M . Let (x, 0) /∈ M for somex ∈ E. If possible let for some

y ∈ F, (0, y) /∈ M . Thusf(x) 6= 0, andg(y) 6= 0 wheref, g are functionals inE∗ and F∗

respectively such that

M = {(a, b)|f(a) + g(b) = 0}.
Sincef(x) 6= 0, andg(y) 6= 0, there are nonzero numberst1, t2 such that(t1x, t2y) ∈ M . Now

setting‖(t1x, t2y)‖ = A, since(t1x, 0) /∈ M, (0, t2y) /∈ M , and‖( t1x
A , t2y

A )‖ = 1, it follows from

lemma 5, that( t1x
A , t2y

A ) ∈ ExtM . Thus eitherx = 0 or y = 0 as a consequence of corollary 4, and

proposition 1, a contradiction. Hence if(x, 0) /∈ M , then for everyy ∈ F, (0, y) ∈ M .

Let E0 = {x1|x1 ∈ E, (x1, 0) ∈ M}. E0 is a subspace ofE, andx chosen in the previous

paragraph, is not inE0. Let us note that if(x1, y1) ∈ M , then since(0, y1) ∈ M , it follows that



(x1, 0) ∈ M . From this it is readily verified thatM = E0 × F . Further if x, andx1 are not

in E0 thenf(x) 6= 0 andf(x1) 6= 0. Thus there is aλ such thatf(x1) − λf(x) = 0. Hence

x1 − λx0 ∈ E0. ThusE0 is of codim 1 inE, as desired.

Similarly if for somey in F, (0, y) /∈ M , it follows thatM = E × F0, F0 a subspace ofF of

codim 1. This completes the proof of the theorem.

Theorem7— LetE andF be two infinite dimensional quasi isometrically incomparable strictly

convex Banach spaces andE0 a subspace ofE of codim 1 (F0 a subspace ofF of codim 1). IfT

is an isometry onE × F ontoE0 × F , thenT is factorable. A similar result holds ifE0 × F is

replaced byE × F0.

PROOF : Let T : E × F −→ E0 × F be a linear isometry with rangeT all of E0 × F . Let

x ∈ E, ‖x‖E = 1. ThenT (x, 0) is an extreme point ofE0 × F . Thus there is ax1 ∈ E0 of unit

norm or ay1 ∈ F of unit norm such thatT (x, 0) is either(x1, 0) or (0, y1). * If T (x, 0) = (0, y1) it

is claimed that the rangeT |E × {0} is a subspace of{0} × F . If not there arex1, x1
1 in E of unit

norm such thatT (x1, 0) = (x1
1, 0). From our choice ofx andy1 it follows that

‖x + x1‖E = ‖(x1
1, y1)‖ = 2.

Hence strict convexity ofE implies x = x1. Thus (0, y1) = (x1
1, 0) a contradiction since

x1
1 6= 0. ** Thus the range ofT |E × {0} is a subspace of{0} × F . In fact it is all of {0} × F .

Otherwise since{0} × F is a subspace of the range ofT , there is ay1 ∈ F of unit norm such that

for somey ∈ F of unit norm,T (0, y) = (0, y1). This observation together with (*) again imply

y1 = y1, which is proved by using strict convexity ofF and proceeding as in the proof of (**). Thus

(x, 0) = (0, y) a contradiction. HenceT mapsE × {0} onto{0} × F . ThusF is isometric withE

contradictingE andF are quasi isometrically incomparable.

The above observations prove that the assumption (*) is false i.e. RangeT |E×{0} is a subspace

of E × {0}. Hence the hypothesis on the range ofT implies rangeT |E × {0} = E0 × {0}.

Further sinceT is a linear isometry onE×F ontoE0×F , and the rangeT |E×{0} = E0×{0},
it is deduced using Proposition 1, that RangeT | {0} × F = {0} × F .

To complete the proof thatT is factorable, letT1 : E −→ E, T2 : F −→ F be defined

by T1(x) = x1, if T (x, 0) = (x1, 0), andT2(y) = y1 if T (0, y) = (0, y1). ThenT1, T2 are linear

isometries respectively onE ontoE0, and onF ontoF . The remarks on the ranges of the restrictions

of T above and the definitions ofT1, T2 imply that T = T1 × T2 i.e. T (x, y) = (T1x, T2y)
completing the proof thatT is factorable.

If the range ofT is E × F0, arguing as in the preceding case, it is proved thatT is factorable.



Theorem8 — If E andF are quasi isometrically incomparable strictly convex Banach spaces,

then there is no forward shift on(E × F, ‖ ‖).

PROOF: If T is a forward shift onE × F , it follows from the definition of a forward shift and

Theorem 6, that either there is a subspaceE0 of E of codim 1 such that the range ofT is E0 × F

or else there is a subspaceF0 of F of codim 1, such that the range ofT is E × F0. Assuming

the first alternative and applying theorem 7, and adopting notation introduced in the theorem, it

follows that the linear isometryT1 is a linear isometry onE onto E0, andT2 : F −→ F is a

surjective linear isometry. Since the rangeTn
2 = F for all n ≥ 1, andTn = Tn

1 ×Tn
2 it follows that⋂

n≥1

RangeTn ⊃ {0} × F contradicting thatT is a forward shift.

In case rangeT = E × F0, a repetition of the above argument leads again to a contradiction,

completing the proof of the Theorem.

In passing we note that as stated in the introduction all the results in this section concerning

E × F equipped with the sum norm‖ ‖1 have verbatim analogues when‖ ‖1 is replaced by‖ ‖∞.

In particular Theorem 8 holds if‖ ‖1 is replaced by‖ ‖∞. Thus we have the following theorem

stated for convenience of reference.

Theorem9 — If E, F are quasi isometrically incomparable strictly convex spaces then the

product spaceE × F with norm‖ ‖1(‖ ‖∞) does not admit a forward shift.

We conclude the paper answering the problem of existence of backward or forward shifts on

the product spacèp1 × `p2 , 1 < p1 6= p2 < ∞ with the sup norm. We note that the spaces

`p1 , `p2 , 1 < p1 6= p2 < ∞ are quasi isometrically incomparable since they are isometrically

incomparable as noted in section 1. Further`p spaces are strictly convex if1 < p < ∞.

Before proceeding to the final theorem we note that a separable reflexive Banach spaceE admits

a forward shift if and only if the dual spaceE∗ admits a backward shift, [TRS].

Theorem10— If 1 < p1 6= p2 < ∞ then the Banach spaces`p1 × `p2 admit neither a forward

nor a backward shift when equipped with‖ ‖1(‖ ‖∞).

PROOF : If follows at once that the spacèp1 × `p2 , 1 < p1 6= p2 < ∞ with ‖ ‖1(‖ ‖∞)
does not admit a forward shift from theorem 9 since these spaces`p1 , `p2 are strictly convex and

quasi isometrically incomparable. To prove that the spaces`p1 × `p2 , 1 < p1 6= p2 < ∞ with

‖ ‖1(‖ ‖∞) do not admit a backward shift we simply note that these spaces are separable reflexive

Banach spaces such that their duals do not admit a forward shift and apply the duality result stated

earlier here. This completes the proof.

It is natural to inquire the existence of shifts on`p×`p. We note that ifT is a forward (backward)

shift on a Banach spaceE and if T1 is the operator onE × E −→ E × E, defined byT1(x, y) =



(y, Tx), thenT1 is a forward (backward) shift onE × E with ‖ ‖1 or ‖ ‖∞. In fact it follows

from the above observation that ifE andF are isometric Banach spaces,E admitting a forward

(backward) shift, then the product spaceE × F admits a forward (backward) shift, with‖ ‖1 or

‖ ‖∞ as the norm on the spaceE × F , by simply noting the easily verified fact that isometries

preserve the property that a Banach space has a forward (backward) shift. In particular it follows

that`p × `p with ‖ ‖1 or ‖ ‖∞ admits forward (backward) shifts if1 ≤ p < ∞.

In conclusion it is noted that similar results are obtained for the productsE×F , whereE = `p,

1 ≤ p ≤ ∞ andF is eitherc0 or `1. Since the proofs for these cases are significantly different

from the proofs of the results in this paper and further vary from case to case these are discussed in

a separate paper.

The results in this paper were presented by the second author in an invited lecture at the Inter-

national Conference on Infinite Dimensional Analysis, held at Kent State University, Kent, Ohio,

February 1-9, 2005, honoring Professors Richard Aron, and Sean Dineen on their sixtieth birthday.

The second author further takes the opportunity to express his gratitude to Professor Pelczynski for

his very interesting remarks on some of the results in the paper.
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