26 research outputs found

    CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    Get PDF
    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapiesThis work was funded by grants from the Ministerio de Ciencia e Innovación PI06/1233 and PI10/01480 to MLC, and SAF2010-22156 to ARS

    Vitamin D induces SIRT1 activation through K610 deacetylation in colon cancer

    Get PDF
    Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD+-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity. Remarkably, our data show that the post-translational control of SIRT1 activity mediates the antiproliferative action of 1,25(OH)2D3. This effect is reproduced by the SIRT1 activator SRT1720, suggesting that SIRT1 activators may offer new therapeutic possibilities for colon cancer patients who are VD deficient or unresponsive. Moreover, this might be extrapolated to inflammation and other VD deficiency-associated and highly prevalent diseases in which SIRT1 plays a prominent role.Funding for this work was provided by the Agencia Estatal de Investigación (PID2019-104867RB-I00/AEI/10.13039/501100011033, RTI2018-099343-B-100 and PID2021-127645OA-I00); Instituto de Salud Carlos III (CIBERONC, CB16/12/00273 and CB16/12/00326); Comunidad de Madrid (Ayudas Atracción de Talento 2017-T1/BMD-5334 and 2021–5 A/BMD-20951; A385-DROPLET Young Reserchers R&D Project 2019 CAM-URJC; PRECICOLON-CM, P2022/BMD7212); Universidad Rey Juan Carlos (ADIPOMELM, Proyecto Puente de Investigación 2020)S

    CX3CL1–CX3CR1 Axis: A New Player in Coeliac Disease Pathogenesis

    Get PDF
    Background: The CX3CL1–CX3CR1 axis has been related to numerous diseases. The aim of our study was to investigate its involvement in coeliac disease (CD) pathogenesis, particularly in the early phase of the disease. Methods: We collected peripheral blood from CD patients and controls, enrolled in a 3-day gluten challenge, to study soluble CX3CL1, I-TAC and MIG by Luminex, CX3CL1 and CX3CR1 gene expression by qPCR, and CX3CR1 protein expression in monocytes and CD8+, CD4+ and γδ+ T cells, by flow cytometry. We also analysed the expression of the CX3CL1 and CX3CR1 mRNA and protein in the duodenal biopsies of CD patients with active and treated disease, and in non-CD control individuals, by qPCR and immunohistochemistry. Results: After the gluten challenge, increased levels of CX3CL1, I-TAC and MIG proteins were observed in the peripheral blood of CD patients, with no changes in CX3CL1 mRNA, or CX3CR1 mRNA and protein. Regarding duodenal tissue, CX3CL1 was absent or barely present in the superficial and basal epithelium of CD patients, contrasting with the moderate to high levels present in controls. Conclusions: CX3CL1 seems to be involved in the appearance and progression of CD, and it appears to be a potential diagnostic biomarker. Its use as an alternative therapeutic target in CD deserves further research

    Sur8, a determinant protein in colorectal cancer tumor progression

    Get PDF
    Resumen del trabajo presentado en el 43rd Annual Meeting of the SEBBM, celebrado en Barcelona (España) del 19 al 21 de julio de 2021.Colorectal cancer (CRC) has the highest incidence rate in the Spanish population. The most important challenge consists on the discovery of efficient disease treatments, due to high mortality rates in highly developed stages. Sur8 is a scaffold protein that positively modulates ERK signaling pathway, which has a major role in the progression and metastasis in colorectal cancer. The main goals of our research are to determine the role that Sur8 plays in the development and progression of CRC and to analyze its possible therapeutic potential. For this purpose, our group has developed an inducible conditional mouse model msur8f/fVillinCreERT2. In order to determine Sur8 action in the colonic tissue, we have developed organoids from the colon epithelium of healthy mice and have analyzed gene expression pattern by an RNAseq approach. Sur8 KO affects oncogenic CRC transcription factors expression, as well as the modulation of some Wnt pathway regulators. In regard to miRNA data, we have observed deregulation of miRNAs related to CRC in Sur8 KO organoids. To determine the role that Sur8 plays in the development and progression of CRC, we have subjected our inducible conditional mice to chemical carcinogenesis and we have observed that Sur8 KO males display less and smaller tumors and do not present any adenocarcinoma. In addition, we have carried out Sur8 silencing in human CRC cell lines by infection with constitutive shRNA lentiviruses. We have observed that Sur8 silencing produces decreases of cell tumor proliferation, and reduction of p-ERK levels. Finally, we are evaluating the effects of putative therapeutic agents against Sur8 in human CRC cell lines. Concretely, we are testing Celastrol, which has been described that binds and blocks the action of Sur8 in vitro. We have observed that Celastrol treatment diminishes the cell tumor proliferation in this model. Altogether, our results indicate that Sur8 may have a determinant role in CRC progression and that Sur8 could be a potential molecular target for the design of novel strategies against CRC

    Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis

    Get PDF
    12 p.-5 fig.-1 tab.Background: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells.Methods: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments.Results: A significant association of high AIP expression with poor CRC patients’ survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver.Conclusions: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.This work was supported by the financial support of the PI17CIII/00045 and PI20CIII/00019 grants from the AES-ISCIII program to RB. J Hendrix acknowledges funding by UH-BOF (BOF20TT06). J Hofkens acknowledges financial support from the Research Foundation-Flanders (FWO, Grant No. ZW15_09-G0H6316N), the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as MPI fellow. S.R. acknowledges the financial support of the KU Leuven through the internal C1 funding (KU Leuven (C14/16/053)). GSF is the recipient of a predoctoral contract (grant number 1193818 N) supported by The Flanders Research Foundation (FWO). The FPU predoctoral contract to AMC is supported by the Spanish Ministerio de Educación, Cultura y Deporte.Peer reviewe

    Increased IKKα Expression in the Basal Layer of the Epidermis of Transgenic Mice Enhances the Malignant Potential of Skin Tumors

    Get PDF
    Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair follicles. The epidermis of K5-IKKα transgenic animals shows several alterations such as hyperproliferation, mislocalized expression of integrin-α6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKα-Tg.AC mice) develop invasive tumors, instead of the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a tumor promoter role of IKKα in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-α6 in skin of transgenic mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKα skin tumors

    Metastasis to the pancreas and the spleen: an increasing diagnostic and therapeutic challenge

    No full text
    We have reviewed the electronic biopsies database files of the Department of Surgical Pathology, Fundación Jiménez Díaz in Madrid (Spain). In this time period (1998-2010) we have found 3 pancreatic metastasis and 5 splenic metastasis. Two of the pancreatic metastases were originated in clear cell renal cell carcinomas. The last pancreatic metastasis was from a malignant cutaneous melanoma diagnosed and treated 8 years before. As for splenic metastasis, three of them were diagnosed during the abdominal surgery for primary therapy of the tumour (2 ovaries and one endometrium), while the remaining 2 corresponded to metastasis from a lung primary diagnosed 1 year before and a colonic primary diagnosed 6 years before. The patients with splenic metastasis died on the short term with progression of the disease despite resection of the splenic lesions, while the patients with pancreatic metastasis have survived longer

    Functional Inactivation of CYLD Promotes the Metastatic Potential of Tumor Epidermal Cells

    Get PDF
    CYLD is a tumor-suppressor gene mutated in the skin appendage tumors cylindromas, trichoepitheliomas, and spiradenomas. We have performed in vivo metastasis assays in nude mice and found that the loss of the deubiquitinase function of CYLD in squamous cell carcinoma (SCC) cells greatly enhances the lung metastatic capability of these cells. These metastases showed several characteristics that make them distinguishable from those carrying a functional CYLD, such as robust angiogenesis, increased expression of tumor malignancy markers of SCCs, and a decrease in the expression of the suppressor of metastasis Maspin. Restoration of Maspin expression in the epidermal SCC cells defective in CYLD deubiquitination function significantly reduces their ability to form metastases, thereby suggesting that the decrease in the levels of Maspin expression plays an important role in the acquisition of metastatic potential of these cells. In addition, we have characterized Maspin downregulation in cylindromas, trichoepitheliomas, and spiradenomas carrying functional inactivating mutations of CYLD, also providing an evidence of the correlation between impaired CYLD function and Maspin decreased expression in vivo in human tumors
    corecore