122 research outputs found
Proteomic analyses of native brain KV4.2 channel complexes
Somatodendritic A-type (I(A)) voltage-gated K(+) (K(V)) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I(A) channels are encoded by K(V)4 α subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain K(V)4.2-encoded I(A) channel complexes. Using anti-K(V)4.2 specific antibodies, K(V)4.2 channel complexes were immunoprecipitated from adult wild type mouse brain. Parallel control experiments were performed on brain samples isolated from (K(V)4.2(−/−)) mice harboring a targeted disruption of the KCND2 (K(V)4.2) locus. Three proteomic strategies were employed: an in-gel approach, coupled to one-dimensional liquid chromatography-tandem MS (1D-LC-MS/MS), and two in-solution approaches, followed by 1D-or 2D-LC-MS/MS. The targeted in-gel 1D-LC-MS/MS analyses demonstrated the presence of the K(V)4 α subunits (K(V)4.2, K(V)4.3 and K(V)4.1) and the K(V)4 accessory, KChIP (KChIPI-4) and DPP (DPP6 and 10), proteins in native brain K(V)4.2 channel complexes. The more comprehensive, in-solution approach, coupled to 2D-LC-MS/MS, also called Multidimensional Protein Identification Technology (MudPIT), revealed that additional regulatory proteins, including the K(V) channel accessory subunit K(V)β1, are also components of native brain K(V)4.2 channel complexes. Additional biochemical and functional approaches will be required to elucidate the physiological roles of these newly identified K(V)4 interacting proteins
C-terminal phosphorylation of NaV1.5 impairs FGF13-dependent regulation of channel inactivation
International audienceVoltage-gated Na(+) (NaV) channels are key regulators of myocardial excitability, and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent alterations in NaV1.5 channel inactivation are emerging as a critical determinant of arrhythmias in heart failure. However, the global native phosphorylation pattern of NaV1.5 subunits associated with these arrhythmogenic disorders and the associated channel regulatory defects remain unknown. Here, we undertook phosphoproteomic analyses to identify and quantify in situ the phosphorylation sites in the NaV1.5 proteins purified from adult WT and failing CaMKIIδc-overexpressing (CaMKIIδc-Tg) mouse ventricles. Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. We then tested the hypothesis that phosphorylation at these two sites impairs fibroblast growth factor 13 (FGF13)-dependent regulation of NaV1.5 channel inactivation. Whole-cell voltage-clamp analyses in HEK293 cells demonstrated that FGF13 increases NaV1.5 channel availability and decreases late Na(+) current, two effects that were abrogated with NaV1.5 mutants mimicking phosphorylation at both sites. Additional co-immunoprecipitation experiments revealed that FGF13 potentiates the binding of calmodulin to NaV1.5 and that phosphomimetic mutations at both sites decrease the interaction of FGF13 and, consequently, of calmodulin with NaV1.5. Together, we have identified two novel native phosphorylation sites in the C terminus of NaV1.5 that impair FGF13-dependent regulation of channel inactivation and may contribute to CaMKIIδc-dependent arrhythmogenic disorders in failing hearts
The sodium channel accessory subunit Navβ1 regulates neuronal excitability through modulation of repolarizing voltage-gated K+ channels
The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting and cell surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na(+) channel accessory subunit Navβ1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navβ1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b null cortical pyramidal neurons lacking Navβ1. Biochemical and voltage-clamp experiments further demonstrated that Navβ1 interacts with and increases the stability of heterologously expressed Kv4.2 protein, resulting in greater total and cell surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Taken together, the results presented here identify Navβ1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability
Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic
Determinants of iFGF13-mediated regulation of myocardial voltage-gated sodium (NaV) channels in mouse
Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels
Associations between the legal context of HIV, perceived social capital, and HIV antiretroviral adherence in North America
Background Human rights approaches to manage HIV and efforts to decriminalize HIV exposure/transmission globally offer hope to persons living with HIV (PLWH). However, among vulnerable populations of PLWH, substantial human rights and structural challenges (disadvantage and injustice that results from everyday practices of a well-intentioned liberal society) must be addressed. These challenges span all ecosocial context levels and in North America (Canada and the United States) can include prosecution for HIV nondisclosure and HIV exposure/transmission. Our aims were to: 1) Determine if there were associations between the social structural factor of criminalization of HIV exposure/transmission, the individual factor of perceived social capital (resources to support one’s life chances and overcome life’s challenges), and HIV antiretroviral therapy (ART) adherence among PLWH and 2) describe the nature of associations between the social structural factor of criminalization of HIV exposure/transmission, the individual factor of perceived social capital, and HIV ART adherence among PLWH. Methods We used ecosocial theory and social epidemiology to guide our study. HIV related criminal law data were obtained from published literature. Perceived social capital and HIV ART adherence data were collected from adult PLWH. Correlation and logistic regression were used to identify and characterize observed associations. Results Among a sample of adult PLWH (n = 1873), significant positive associations were observed between perceived social capital, HIV disclosure required by law, and self-reported HIV ART adherence. We observed that PLWH who have higher levels of perceived social capital and who live in areas where HIV disclosure is required by law reported better average adherence. In contrast, PLWH who live in areas where HIV transmission/exposure is a crime reported lower 30-day medication adherence. Among our North American participants, being of older age, of White or Hispanic ancestry, and having higher perceived social capital, were significant predictors of better HIV ART adherence. Conclusions Treatment approaches offer clear advantages in controlling HIV and reducing HIV transmission at the population level. These advantages, however, will have limited benefit for adherence to treatments without also addressing the social and structural challenges that allow HIV to continue to spread among society’s most vulnerable populations
Self-compassion and risk behavior among people living with HIV/AIDS.
Sexual risk behavior and illicit drug use among people living with HIV/AIDS (PLWHA) contribute to poor health and onward transmission of HIV. The aim of this collaborative multi-site nursing research study was to explore the association between self-compassion and risk behaviors in PLWHA. As part of a larger project, nurse researchers in Canada, China, Namibia, Puerto Rico, Thailand and the US enrolled 1211 sexually active PLWHA using convenience sampling. The majority of the sample was male, middle-aged, and from the US. Illicit drug use was strongly associated with sexual risk behavior, but participants with higher self-compassion were less likely to report sexual risk behavior, even in the presence of illicit drug use. Self-compassion may be a novel area for behavioral intervention development for PLWHA
Effect of aspirin on cancer incidence and mortality in older adults.
BACKGROUND: ASPirin in Reducing Events in the Elderly (ASPREE), a randomized double-blind placebo-controlled trial (RCT) of daily low-dose aspirin (100 mg) in older adults, showed an increase in all-cause mortality, primarily due to cancer. In contrast prior RCTs, mainly involving younger individuals, demonstrated a delayed cancer benefit with aspirin. We now report a detailed analysis of cancer incidence and mortality. METHODS: 19,114 Australian and U.S. community-dwelling participants aged 70+ years (U.S. minorities 65+ years) without cardiovascular disease, dementia or physical disability were randomized and followed for a median of 4.7 years. Fatal and non-fatal cancer events, a prespecified secondary endpoint, were adjudicated based on clinical records. RESULTS: 981 cancer events occurred in the aspirin and 952 in the placebo groups. There was no statistically significant difference between groups for all incident cancers (HR = 1.04, 95% CI = 0.95 to 1.14), hematological cancer (HR = 0.98, 95% CI = 0.73 to 1.30), or all solid cancers (HR = 1.05, 95% CI = 0.95 to 1.15), including by specific tumor type. However, aspirin was associated with an increased risk of incident cancer that had metastasized (HR = 1.19, 95% CI = 1.00 to 1.43) or was stage 4 at diagnosis (HR = 1.22, 95% CI = 1.02 to 1.45), and with higher risk of death for cancers that presented at stages 3 (HR = 2.11, 95% CI = 1.03 to 4.33) or 4 (HR = 1.31, 95% CI = 1.04 to 1.64). CONCLUSIONS: In older adults, aspirin treatment had an adverse effect on later stages of cancer evolution. These findings suggest that in older persons, aspirin may accelerate the progression of cancer and thus, suggest caution with its use in this age group
- …