6,440 research outputs found

    Stokes flow paths separation and recirculation cells in X-junctions of varying angle

    Get PDF
    Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction: Planar Laser Induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at 90\degree to zero at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry con rm these results and show that, below the threshold angle 33.8\degree recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further leads to the appearance of new recirculation cells with lower flow velocities

    Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging

    Full text link
    High-contrast imaging for the detection and characterization of exoplanets relies on the instrument's capability to block out the light of the host star. Some current post-processing methods for calibrating out the residual speckles use information redundancy offered by multispectral imaging but do not use any prior information on the origin of these speckles. We investigate whether additional information on the system and image formation process can be used to more finely exploit the multispectral information. We developed an inversion method in a Bayesian framework that is based on an analytical imaging model to estimate both the speckles and the object map. The model links the instrumental aberrations to the speckle pattern in the image focal plane, distinguishing between aberrations upstream and downstream of the coronagraph. We propose and validate several numerical techniques to handle the difficult minimization problems of phase retrieval and achieve a contrast of 10^6 at 0.2 arcsec from simulated images, in the presence of photon noise. This opens up the the possibility of tests on real data where the ultimate performance may override the current techniques if the instrument has good and stable coronagraphic imaging quality. This paves the way for new astrophysical exploitations or even new designs for future instruments

    Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    Get PDF
    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l−1. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency

    System-performance analysis of optimized gain-switched pulse source employed in 40-and 80-Gb/s OTDM systems

    Get PDF
    The development of ultrashort optical pulse sources, exhibiting excellent temporal and spectral profiles, will play a crucial role in the performance of future optical time division multiplexed (OTDM) systems. In this paper, we demonstrate the difference in performance in 40- and 80-Gb/s OTDM systems between optical pulse sources based on a gain-switched laser whose pulses are compressed by a nonlinearly and linearly chirped fiber Bragg grating. The results achieved show that nonlinear chirp in the wings of the pulse leads to temporal pedestals formed on either side of the pulse when using the linearly chirped grating, whereas with the nonlinearly chirped grating, pedestals are essentially eliminated. In an OTDM system, these pedestals cause coherent interaction between neighboring channels, resulting in intensity fluctuations that lead to a power penalty of 1.5 dB (40 Gb/s) and 3.5 dB (80 Gb/s) in comparison to the case where the nonlinearly chirped grating is used. Simulations carried out with the aid of Virtual Photonics Inc. verify the results achieved

    Twisted geometries: A geometric parametrisation of SU(2) phase space

    Full text link
    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each triangle of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an abelianisation of the SU(2) connection. The results are relevant for the construction of coherent states, and as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.Comment: 28 pages. v2 and v3 minor change

    FROG characterisation of SOA-based wavelength conversion using XPM in conjunction with shifted filtering up to line rates of 80 GHz

    Get PDF
    The work we present here builds on recent work where we obtained 80 Gb/s error free performance using cross phase modulation (XPM) in an SOA in conjunction with a blue shifted bandpass filter. Here we present a detailed characterisation of this wavelength conversion scheme using a Frequency Resolved Optical Gating (FROG) measurement scheme for both red and blue shifted filtering. This type of characterisation has not been provided before to the best of our knowledge and is an important analysis firstly to achieve a full understanding of the gain and phase dynamics exploited by the wavelength conversion scheme presented and secondly to design a filter so that an optimum performance can be obtaine

    CO2 laser beam welding of AM60 magnesium-based alloy

    Get PDF
    The authors are grateful to FONDERIE MESSIER HONSEL group that provided the as-cast magnesium alloy workpieces. The authors would like also to acknowledge the technical support of Dr. Moraru of the LSIS Laboratory-Arts et Métiers ParisTech-Aix En Provence-France.Magnesium alloys have a 33% lower density than aluminum alloys, whereas they exhibit the same mechanical characteristics. Their application increases in many economic sectors, in particular, in aeronautic and automotive industries. Nevertheless, their assembly with welding techniques still remains to be developed. In this paper, we present a CO2 laser welding investigation of AM60 magnesium-based alloy. Welding parameters range is determinate for the joining of 3 mm thickness sheets. The effects of process parameters including beam power, welding speed, focusing position, and shielding gas flow are studied. Experimental results show that the main parameters that determine the weld quality are the laser beam power, the welding speed, and the shielding gas flow. The focal point position has a minor effect on weld quality, however, it has an influence on melting zone width. For optimized welding parameters, metallurgical observations show that after laser welding of AM60 alloy dendritic microstructure is observed on melting zone after high solidification rate. A small heat affected zone is also detected. Finally, hardness tests indicate that microhardness of the weld is higher than that of base metal

    Analysis of bit rate dependence up to 80 Gbit/s of a simple wavelength converter based on XPM in a SOA and a shifted filtering

    Get PDF
    This paper provides the analysis of wavelength converted pulses obtained with a simple semiconductor optical amplifier (SOA)-based wavelength conversion scheme, which exploits cross phase modulation (XPM) in an SOA in conjunction with shifted filtering. The analysis includes experimental measurements of the back-to-back system performances as well as frequency-resolved optical gating (FROG) characterisations of the wavelength converted pulses. These measurements are implemented at different bit rates up to 80 Gbit/s and for both red and blue-shifted filtering, particularly showing different patterning effect dependencies of red and blue-shifting techniques. This analysis is developed by the addition of a numerical study which corroborates the experimental results. A further understanding of the different performances of red and blue filtering techniques, presented in the literature, can thus be proposed. The placement of the filter to undertake red-shifted filtering (RSF) allows us to achieve very short pulse widths but high bit rate operation is limited by pattern effects. The blue-shifted filtering (BSF) technique shows optimum performance as regards to patterning effects even if the wavelength converted pulses can be larger
    corecore