31 research outputs found

    High resolution scanning tunneling spectroscopy of ultrathin Pb on Si(111)-(6x6) substrate

    Full text link
    The electronic structure of Si(111)-(6x6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(111)_{(111)} and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(111)-(6x6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.Comment: 7 pages, 7 figures, accepted for publication in Surface Scienc

    Anomalous thickness dependence of the Hall effect in ultrathin Pb layers on Si(111)

    Get PDF
    The magnetoconductive properties of ultrathin Pb films deposited on Si(111) are measured and compared with density-functional electronic band-structure calculations on two-dimensional, free-standing, 1 to 8 monolayers thick Pb(111) slabs. A description with free-standing slabs is possible because it turned out that the Hall coefficient is independent of the substrate and of the crystalline order in the film. We show that the oscillations in sign of the Hall coefficient observed as a function of film thickness can be explained directly from the thickness dependent variations of the electronic bandstructure at the Fermi energy.Comment: 4 pages incl. 3 figures, RevTeX, to appear in Phys. Rev.

    Surface diffusion of Pb atoms on the Si(553)-Au surface in narrow quasi-one-dimensional channels

    Get PDF
    The one-dimensional diffusion of individual Pb atoms on the Si(553)-Au surface has been investigated by a combination of scanning tunneling microscopy (STM), spectroscopy (STS), and first-principles density functional theory. The obtained results unambiguously prove that the diffusion channels are limited to a narrow region between Au chains and step edges of the surface. Much wider channels observed in STM and STS data have electronic origin and result from an interaction of Pb with surface atoms. The length of the channels is determined by a distance between defects at step edges of the Si(553)-Au surface. The defects can act as potential barriers or potential wells for Pb atoms, depending on their origin

    Double non-equivalent chain structure on vicinal Si(557)-Au surface

    Full text link
    We study electronic and topographic properties of the vicinal Si(557)-Au surface using scanning tunneling microscopy and reflection of high energy electron diffraction technique. STM data reveal double wire structures along terraces. Moreover behavior of the voltage dependent STM tip - surface distance is different in different chains. While the one chain shows oscillations of the distance which are sensitive to the sign of the voltage bias, the oscillations in the other chain remain unchanged with respect to the positive/negative biases. This suggests that one wire has metallic character while the other one - semiconducting. The experimental results are supplemented by theoretical calculations within tight binding model suggesting that the observed chains are made of different materials, one is gold and the other one is silicon chain.Comment: 9 pages, 12 figures, accepted for publication in Phys. Rev.

    Electron transport through a strongly correlated monoatomic chain

    Full text link
    We study transport properties of a strongly correlated monoatomic chain coupled to metallic leads. Our system is described by tight binding Hubbard-like model in the limit of strong on-site electron-electron interactions in the wire. The equation of motion technique in the slave boson representation has been applied to obtain analytical and numerical results. Calculated linear conductance of the system shows oscillatory behavior as a function of the wire length. We have also found similar oscillations of the electron charge in the system. Moreover our results show spontaneous spin polarization in the wire. Finally, we compare our results with those for non-interacting chain and discuss their modifications due to the Coulomb interactions in the system.Comment: 7 pages, 5 figure

    Electron transport across a quantum wire in the presence of electron leakage to a substrate

    Full text link
    We investigate electron transport through a mono-atomic wire which is tunnel coupled to two electrodes and also to the underlying substrate. The setup is modeled by a tight-binding Hamiltonian and can be realized with a scanning tunnel microscope (STM). The transmission of the wire is obtained from the corresponding Green's function. If the wire is scanned by the contacting STM tip, the conductance as a function of the tip position exhibits oscillations which may change significantly upon increasing the number of wire atoms. Our numerical studies reveal that the conductance depends strongly on whether or not the substrate electrons are localized. As a further ubiquitous feature, we observe the formation of charge oscillations.Comment: 7 pages, 7 figure
    corecore