172 research outputs found
Bosonic String and String Field Theory: a solution using Ultradistributions of Exponential Type
In this paper we show that Ultradistributions of Exponential Type (UET) are
appropriate for the description in a consistent way string and string field
theories. A new Lagrangian for the closed string is obtained and shown to be
equivalent to Nambu-Goto's Lagrangian. We also show that the string field is a
linear superposition of UET of compact support CUET). We evaluate the
propagator for the string field, and calculate the convolution of two of them.Comment: 30 page
A direct proof of Jauregui-Tsallis' conjecture
We give here direct proof of a recent conjecture of Jauregui and Tsallis
about a new representation of Dirac's delta distribution by means of
q-exponentials. The proof is based in the use of tempered ultradistributions'
theory.Comment: 19 pages, no figure
Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations
NMR spectroscopy (H-1, C-13, N-15) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS-), CO2, OCS, and trithiocarbonate (CS32-). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro](+) cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS-, CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS2 is unfavoured and that the anion offers a competitive reactive channel via an oxygen-sulphur exchange mechanism with the solute in systems (1) and (2). (C) 2014 AIP Publishing LLC
Intercomparison Study of Six HTDMAs: Results and Recommendations
We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.JRC.H.2-Climate chang
Structure-Based Discovery of A2A Adenosine Receptor Ligands
The recent determination of X-ray structures of pharmacologically relevant GPCRs has made these targets accessible to structure-based ligand discovery. Here we explore whether novel chemotypes may be discovered for the A(2A) adenosine receptor, based on complementarity to its recently determined structure. The A(2A) adenosine receptor signals in the periphery and the CNS, with agonists explored as anti-inflammatory drugs and antagonists explored for neurodegenerative diseases. We used molecular docking to screen a 1.4 million compound database against the X-ray structure computationally and tested 20 high-ranking, previously unknown molecules experimentally. Of these 35% showed substantial activity with affinities between 200 nM and 9 microM. For the most potent of these new inhibitors, over 50-fold specificity was observed for the A(2A) versus the related A(1) and A(3) subtypes. These high hit rates and affinities at least partly reflect the bias of commercial libraries toward GPCR-like chemotypes, an issue that we attempt to investigate quantitatively. Despite this bias, many of the most potent new ligands were novel, dissimilar from known ligands, providing new lead structures for modulation of this medically important target
A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer\u27s disease
Copyright \ua9 2024 The Author(s). Published by Elsevier Inc. All rights reserved. In Alzheimer\u27s disease (AD), amyloid β (Aβ)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aβ in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD
Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis
Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1G93A ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders
- …