2,536 research outputs found

    Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density

    Full text link
    Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest that these two rare-gas atoms measure a qualitatively different surface corrugation: While Ne atom scattering seemingly reflects the electron-density undulation of the substrate surface, the scattering potential of He atoms appears to be anticorrugated. An understanding of this perplexing result is lacking. In this paper we present density functional theory calculations of the interaction potentials of He and Ne with Rh(110). We find that, and explain why, the nature of the interaction of the two probe particles is qualitatively different, which implies that the topographies of their scattering potentials are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure

    Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    No full text
    International audienceAn error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50?100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS ? Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50?100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based) occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques)

    Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains

    Full text link
    The harmonic Fibonacci chain, which is one of a quasiperiodic chain constructed with a recursion relation, has a singular continuous frequency-spectrum and critical eigenstates. The validity of the Fourier law is examined for the harmonic Fibonacci chain with stochastic heat baths at both ends by investigating the system size N dependence of the heat current J and the local temperature distribution. It is shown that J asymptotically behaves as (ln N)^{-1} and the local temperature strongly oscillates along the chain. These results indicate that the Fourier law does not hold on the harmonic Fibonacci chain. Furthermore the local temperature exhibits two different distribution according to the generation of the Fibonacci chain, i.e., the local temperature distribution does not have a definite form in the thermodynamic limit. The relations between N-dependence of J and the frequency-spectrum, and between the local temperature and critical eigenstates are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma

    IS THE END-TIDAL PARTIAL PRESSURE OF ISOFLURANE A GOOD PREDICTOR OF ITS ARTERIAL PARTIAL PRESSURE?

    Get PDF
    End-tidal partial pressure of isoflurane (PE′iso) may be used as a measure of anaesthetic depth. During uptake, an arterial partial pressure (Paiso) which is considerably less than PE′iso(Paiso/PE′iso<<1) leads to underestimation of depth of anaesthesia and, during elimination, PE′iso/Paiso<<1 will lead to an overestimation of anaesthetic depth. We measured Paiso/PE′iso during a 60-min uptake period of 1% isoflurane and PE′iso/Paiso during the subsequent 60-min elimination period in 26 patients (age 13-88 yr, ASA I-III) undergoing various surgical procedures. After 15 min of isoflurane uptake, Paiso/PE′iso of 26 patients was mean 0.78 (SD 0.10) and this increased only marginally at 60 min (0.79 (0.09)), whereas during elimination, PE′iso/Paiso was in the range 0.79 (0.14)-0.83 (0.11). Predictability of Paiso in a given patient is hindered by the high SD of Paiso/PE′iso and PE′iso/Paiso, but it may be improved by taking into account age, ASA physical status category, vital capacity, inspired minus end-tidal isoflurane partial pressure and arterial minus end-tidal carbon dioxide partial pressure during uptake; and obesity, end-tidal isoflurane partial pressure and arterial minus end-tidal carbon dioxide partial pressure during elimination. However, even with multiple regression analysis (to account for the various possible variables), clinically useful prediction of Paiso/PE′iso and PE′iso/Paiso in a particular patient is not possible (residual SD 0.084 and 0.113, respectively

    Simulational Study on Dimensionality-Dependence of Heat Conduction

    Full text link
    Heat conduction phenomena are studied theoretically using computer simulation. The systems are crystal with nonlinear interaction, and fluid of hard-core particles. Quasi-one-dimensional system of the size of Lx×Ly×Lz(LzLx,Ly)L_x\times L_y\times L_z(L_z\gg L_x,L_y) is simulated. Heat baths are put in both end: one has higher temperature than the other. In the crystal case, the interaction potential VV has fourth-order non-linear term in addition to the harmonic term, and Nose-Hoover method is used for the heat baths. In the fluid case, stochastic boundary condition is charged, which works as the heat baths. Fourier-type heat conduction is reproduced both in crystal and fluid models in three-dimensional system, but it is not observed in lower dimensional system. Autocorrelation function of heat flux is also observed and long-time tails of the form of td/2\sim t^{-d/2}, where dd denotes the dimensionality of the system, are confirmed.Comment: 4 pages including 3 figure

    Rapid Microbiological Testing: Monitoring the Development of Bacterial Stress

    Get PDF
    The ability to respond to adverse environments effectively along with the ability to reproduce are sine qua non conditions for all sustainable cellular forms of life. Given the availability of an appropriate sensing modality, the ubiquity and immediacy of the stress response could form the basis for a new approach for rapid biological testing. We have found that measuring the dielectric permittivity of a cellular suspension, an easily measurable electronic property, is an effective way to monitor the response of bacterial cells to adverse conditions continuously. The dielectric permittivity of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus, treated with gentamicin and vancomycin, were measured directly using differential impedance sensing methods and expressed as the Normalized Impedance Response (NIR). These same strains were also heat-shocked and chemically stressed with Triton X-100 or H2O2. The NIR profiles obtained for antibiotic-treated susceptible organisms showed a strong and continuous decrease in value. In addition, the intensity of the NIR value decrease for susceptible cells varied in proportion to the amount of antibiotic added. Qualitatively similar profiles were found for the chemically treated and heat-shocked bacteria. In contrast, antibiotic-resistant cells showed no change in the NIR values in the presence of the drug to which it is resistant. The data presented here show that changes in the dielectric permittivity of a cell suspension are directly correlated with the development of a stress response as well as bacterial recovery from stressful conditions. The availability of a practical sensing modality capable of monitoring changes in the dielectric properties of stressed cells could have wide applications in areas ranging from the detection of bacterial infections in clinical specimens to antibiotic susceptibility testing and drug discovery

    Performance of LED-Based Fluorescence Microscopy to Diagnose Tuberculosis in a Peripheral Health Centre in Nairobi.

    Get PDF
    Sputum microscopy is the only tuberculosis (TB) diagnostic available at peripheral levels of care in resource limited countries. Its sensitivity is low, particularly in high HIV prevalence settings. Fluorescence microscopy (FM) can improve performance of microscopy and with the new light emitting diode (LED) technologies could be appropriate for peripheral settings. The study aimed to compare the performance of LED-FM versus Ziehl-Neelsen (ZN) microscopy and to assess feasibility of LED-FM at a low level of care in a high HIV prevalence country

    Observational Bias and Young Massive Cluster Characterisation II. Can Gaia accurately observe young clusters and associations?

    Full text link
    Observations of clusters suffer from issues such as completeness, projection effects, resolving individual stars and extinction. As such, how accurate are measurements and conclusions are likely to be? Here, we take cluster simulations (Westerlund2- and Orion- type), synthetically observe them to obtain luminosities, accounting for extinction and the inherent limits of Gaia, then place them within the real Gaia DR3 catalogue. We then attempt to rediscover the clusters at distances of between 500pc and 4300pc. We show the spatial and kinematic criteria which are best able to pick out the simulated clusters, maximising completeness and minimising contamination. We then compare the properties of the 'observed' clusters with the original simulations. We looked at the degree of clustering, the identification of clusters and subclusters within the datasets, and whether the clusters are expanding or contracting. Even with a high level of incompleteness (e.g. <2%<2\% stellar members identified), similar qualitative conclusions tend to be reached compared to the original dataset, but most quantitative conclusions are likely to be inaccurate. Accurate determination of the number, stellar membership and kinematic properties of subclusters, are the most problematic to correctly determine, particularly at larger distances due to the disappearance of cluster substructure as the data become more incomplete, but also at smaller distances where the misidentification of asterisms as true structure can be problematic. Unsurprisingly, we tend to obtain better quantitative agreement of properties for our more massive Westerlund2-type cluster. We also make optical style images of the clusters over our range of distances.Comment: 19 pages, 10 figures, 6 tables. Accepted for publication in MNRA
    corecore