381 research outputs found

    Response Time is More Important than Walking Speed for the Ability of Older Adults to Avoid a Fall after a Trip

    Get PDF
    We previously reported that the probability of an older adult recovering from a forward trip and using a “lowering” strategy increases with decreased walking velocity and faster response time. To determine the within-subject interaction of these variables we asked three questions: (1) Is the body orientation at the time that the recovery foot is lowered to the ground (“tilt angle”) critical for successful recovery? (2) Can a simple inverted pendulum model, using subject-specific walking velocity and response time as input variables, predict this body orientation, and thus success of recovery? (3) Is slower walking velocity or faster response time more effective in preventing a fall after a trip? Tilt angle was a perfect predictor of a successful recovery step, indicating that the recovery foot placement must occur before the tilt angle exceeds a critical value of between 23° and 26° from vertical. The inverted pendulum model predicted the tilt angle from walking velocity and response time with an error of 0.4±2.2° and a correlation coefficient of 0.93. The model predicted that faster response time was more important than slower walking velocity for successful recovery. In a typical individual who is at risk for falling, we predicted that a reduction of response time to a normal value allows a 77% increase in safe walking velocity. The mathematical model produced patient-specific recommendations for fall prevention, and suggested the importance of directing therapeutic interventions toward improving the response time of older adults

    Flare-induced changes of the photospheric magnetic field in a δ\delta-spot deduced from ground-based observations

    Full text link
    Aims: Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a δ\delta-spot belonging to active region NOAA 11865. Methods: High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 \AA\ and Si I 10786 \AA, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results: The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550 G was found that bridges the PIL and connects umbrae of opposite polarities in the δ\delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 \AA\ filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions: The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations.Comment: 8 pages, 9 figures. Accepted for publication in Astronomy & Astrophysic

    Finite element simulation of tensile test of composite materials manufactured by 3D printing

    Get PDF
    © 2020 Institute of Physics Publishing. All rights reserved. A principle of 3D printing is based on formation of continuous layers of materials up to a formation of the final shape. Materials for production of given components are composite materials, especially on the basis of so-termed CFRP, CRP, (carbon fibre - so-termed polymers reinforced by carbon fibres). The objective of this paper is to predict the deformation length of carbon/onyx composite laminates using Finite Element Analysis (FEA) and compare with universal testing machine INOVA FU 160 deformation results through the tensile load. Specimen were printed at raster orientation angles of 0°, 45° and 90° to test orientation effects on part strength. 16 ply CFRP specimens with various stacking sequences were analysed for their strength and displacements. A shell model has been established for simulation of the tensile test composite specimen which enables to understand the mechanical strength and strain at failure of the composite materials. The simulations of experiment are provided in FEM program ANSYS and ANSYS/Workbench

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Surface Incommensurate Structure in an Anisotropic Model with competing interactions on Semiinfinite Triangular Lattice

    Full text link
    An anisotropic spin model on a triangular semiinfinite lattice with ferromagnetic nearest-neighbour interactions and one antiferromagnetic next-nearest-neighbour interaction is investigated by the cluster transfer-matrix method. A phase diagram with antiphase, ferromagnetic, incommensurate, and disordered phase is obtained. The bulk uniaxial incommensurate structure modulated in the direction of the competing interactions is found between the antiphase and the disordered phase. The incommensurate structure near the surface with free and boundary condition is studied at different temperatures. Paramagnetic damping at the surface and enhancement of the incommensurate structure in the subsurface region at high temperatures and a new subsurface incommensurate structure modulated in two directions at low temperatures are found.Comment: 13 pages, plainTex, 11 figures, paper submitted to J. Phys.

    Magnetospheric transmission function to separate near earth primary and secondary cosmic rays

    Get PDF
    The main features of charged particles accessing the Earth magnetosphere have been studied by tracing their trajectories. The reconstruction code has allowed us to perform two simulations of Cosmic Rays (CRs) accessing the AMS detector, one for the 1998 data, and the other for the 2005 (at the moment, the IGRF data are available up to that year). The parameters of the external field model for 2005 have been estimated from the solar conditions in 1982 and 1984, two solar cycles before. The CRs have been assumed to be isotropically impinging on the AMS detector, flying at 400 km altitude with energies reproducing the AMS-01 observed spectrum. The computation of allowed and forbidden primary particle trajectories has enabled us the estimate of the Transmission Function in both periods. A comparison with the overall (primary and secondary) AMS-01 data provides by subtraction the determination of the secondary spectrum

    Metal ion-implanted TiN thin films: Induced effects on structural and optical properties

    Get PDF
    The ion implantation technique has a number of advantages over conventional methods for the improvement of thin films that offer the various possibilities of their use in different industrial and technological fields. Herein, we present the effects of metal ion implantation on the structural and optical properties of TiN thin films. TiN films of 170 nm thickness were grown by d.c. reactive sputtering on Si (100) wafers and then irradiated at 5×1016 ions/cm2 with either Au, Ag, or Cu ions by using two different energies per each implanted metal. The results showed that as deposited TiN crystallizes in form of fcc cubic structure, with the crystallites preferentially oriented along the (111) plane. For all implanted layers the cubic crystallographic structure was preserved, but compared to as deposited TiN the crystallites were smaller and the lattice was contracted. Besides, the surface compositional analysis of as deposited sample showed the coexistence of TiN, TiO2 and TiOxNy phases and this was related to the surface oxidation of the films due to the exposure to air. After implantation, the results were almost similar for all metals, showing an increase in TiO2 contribution and the formation of pure metallic Au and Ag phases, while copper is in the Cu2+ state, which is attributed to Cu(II)-oxide and Cu(OH)2. The microstructural characteristics including defect formation, changes in the crystallite size and lattice contraction, and also growth of different metallic phases during implantations were correlated with the findings of the optical characterization of the implanted films. For as deposited film we found energy gap of 2.91 eV, which was lower than the value typical for TiN. After implantation the gap was shifted to higher energies, while at the visible part of the region, additional energy levels, at photon energies below 2.9 eV were observed. Further, all implanted films showed degraded photocatalytic activity compared to as deposited TiN, among which Cu-implanted samples exhibited the best photocatalytic performances. The lower photocatalytic activity of Au and Ag-implanted films compared to Cu implantations was ascribed to larger structural defects and formation of less favorable electronic states

    Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

    Get PDF
    Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base
    corecore