798 research outputs found
Surface plasmon lifetime in metal nanoshells
The lifetime of localized surface plasmon plays an important role in many
aspects of plasmonics and its applications. In small metal nanostructures, the
dominant mechanism restricting plasmon lifetime is size-dependent Landau
damping. We performed quantum-mechanical calculations of Landau damping for the
bright surface plasmon mode in a metal nanoshell. In contrast to the
conventional model based on the electron surface scattering, we found that the
damping rate decreases as the nanoshell thickness is reduced. The origin of
this behavior is traced to the spatial distribution of plasmon local field
inside the metal shell. We also found that, due to interference of electron
scattering amplitudes from nanoshell's two metal surfaces, the damping rate
exhibits pronounced quantum beats with changing shell thickness.Comment: 9 pages, 4 Figure
Theory of plasmon-enhanced high-harmonic generation in the vicinity of metal nanostructures in noble gases
We present a semiclassical model for plasmon-enhanced high-harmonic
generation (HHG) in the vicinity of metal nanostructures. We show that both the
inhomogeneity of the enhanced local fields and electron absorption by the metal
surface play an important role in the HHG process and lead to the generation of
even harmonics and to a significantly increased cutoff. For the examples of
silver-coated nanocones and bowtie antennas we predict that the required
intensity reduces by up to three orders of magnitudes and the HHG cutoff
increases by more than a factor of two. The study of the enhanced high-harmonic
generation is connected with a finite-element simulation of the electric field
enhancement due to the excitation of the plasmonic modes.Comment: 4 figure
Nanoplasmonic Renormalization and Enhancement of Coulomb Interactions
Nanostructured plasmonic metal systems are known to enhance greatly variety
of radiative and nonradiative optical processes, both linear and nonlinear,
which are due to the interaction of an electron in a molecule or semiconductor
with the enhanced local optical field of the surface plasmons. Principally
different are numerous many-body phenomena that are due to the Coulomb
interaction between charged particles: carriers (electrons and holes) and ions.
These include carrier-carrier or carrier-ion scattering, energy and momentum
transfer (including the drag effect), thermal equilibration, exciton formation,
impact ionization, Auger effects, etc. It is not widely recognized that these
and other many-body effects can also be modified and enhanced by the
surface-plasmon local fields. A special but extremely important class of such
many-body phenomena is constituted by chemical reactions at metal surfaces,
including catalytic reactions. Here, we propose a general and powerful theory
of the plasmonic enhancement of the many-body phenomena resulting in a closed
expression for the surface plasmon-dressed Coulomb interaction. We illustrate
this theory by computing this dressed interaction explicitly for an important
example of metal-dielectric nanoshells, which exhibits a reach resonant
behavior in both the magnitude and phase. This interaction is used to describe
the nanoplasmonic-enhanced Foerster energy transfer between nanocrystal quantum
dots in the proximity of a plasmonic nanoshell. Catalysis at nanostructured
metal surfaces, nonlocal carrier scattering and surface-enhanced Raman
scattering are discussed among other effects and applications where the
nanoplasmonic renormalization of the Coulomb interaction may be of principal
importance
The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance
The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to
mid-ultraviolet) solar radiometer onboard the European Space Agency PROBA2
mission that was launched in November 2009. LYRA acquires solar irradiance
measurements at a high cadence (nominally 20 Hz) in four broad spectral
channels, from soft X-ray to MUV, that have been chosen for their relevance to
solar physics, space weather and aeronomy. In this article, we briefly review
the design of the instrument, give an overview of the data products distributed
through the instrument website, and describe the way that data are calibrated.
We also briefly present a summary of the main fields of research currently
under investigation by the LYRA consortium
Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring
We present an experimental spectroscopic study of large random colloidal
aggregates of silver nanoparticles undergoing local restructuring. We argue
that such well-known phenomena as strong fluctuation of local electromagnetic
fields, appearance of "hot spots" and enhancement of nonlinear optical
responses depend on the local structure on the scales of several nanosphere
diameters, rather that the large-scale fractal geometry of the sample.Comment: 3.5 pages, submitted to J. Chem. Phy
Mesoscopic Cooperative Emission From a Disordered System
We study theoretically the cooperative light emission from a system of classical oscillators confined within a volume with spatial scale, , much
smaller than the radiation wavelength, . We assume
that the oscillators frequencies are randomly distributed around a central
frequency, , with some characteristic width, . In
the absence of disorder, that is , the cooperative emission spectrum
is composed of a narrow subradiant peak superimposed on a wide superradiant
band. When , we demonstrate that if is large enough, the
subradiant peak is not simply broadened by the disorder but rather splits into
a system of random narrow peaks. We estimate the spectral width of these peaks
as a function of , and . We also estimate the
amplitude of this mesoscopic structure in the emission spectrum.Comment: 25 pages including 6 figure
Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red
Optical resonances spanning the Near and Short Infra-Red spectral regime were
exhibited experimentally by arrays of plasmonic nano-particles with concave
cross-section. The concavity of the particle was shown to be the key ingredient
for enabling the broad band tunability of the resonance frequency, even for
particles with dimensional aspect ratios of order unity. The atypical
flexibility of setting the resonance wavelength is shown to stem from a unique
interplay of local geometry with surface charge distributions
- …