15,377 research outputs found
Nonlinear Stochastic Resonance with subthreshold rectangular pulses
We analyze the phenomenon of nonlinear stochastic resonance (SR) in noisy
bistable systems driven by pulsed time periodic forces. The driving force
contains, within each period, two pulses of equal constant amplitude and
duration but opposite signs. Each pulse starts every half-period and its
duration is varied. For subthreshold amplitudes, we study the dependence of the
output signal-to-noise ratio (SNR) and the SR gain on the noise strength and
the relative duration of the pulses. We find that the SR gains can reach values
larger than unity, with maximum values showing a nonmonotonic dependence on the
duration of the pulses.Comment: 7 pages, 2 figure
Explosive first-order transition to synchrony in networked chaotic oscillators
Critical phenomena in complex networks, and the emergence of dynamical abrupt
transitions in the macroscopic state of the system are currently a subject of
the outmost interest. We report evidence of an explosive phase synchronization
in networks of chaotic units. Namely, by means of both extensive simulations of
networks made up of chaotic units, and validation with an experiment of
electronic circuits in a star configuration, we demonstrate the existence of a
first order transition towards synchronization of the phases of the networked
units. Our findings constitute the first prove of this kind of synchronization
in practice, thus opening the path to its use in real-world applications.Comment: Phys. Rev. Lett. in pres
The missing atom as a source of carbon magnetism
Atomic vacancies have a strong impact in the mechanical, electronic and
magnetic properties of graphene-like materials. By artificially generating
isolated vacancies on a graphite surface and measuring their local density of
states on the atomic scale, we have shown how single vacancies modify the
electronic properties of this graphene-like system. Our scanning tunneling
microscopy experiments, complemented by tight binding calculations, reveal the
presence of a sharp electronic resonance at the Fermi energy around each single
graphite vacancy, which can be associated with the formation of local magnetic
moments and implies a dramatic reduction of the charge carriers' mobility.
While vacancies in single layer graphene naturally lead to magnetic couplings
of arbitrary sign, our results show the possibility of inducing a macroscopic
ferrimagnetic state in multilayered graphene samples just by randomly removing
single C atoms.Comment: Accepted for publication in Physical Review Letter
Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy
Pseudospin, an additional degree of freedom related to the honeycomb
structure of graphene, is responsible of many of the outstanding electronic
properties found in this material. This article provides a clear understanding
of how such pseudospin impacts the quasiparticle interferences of monolayer
(ML) and bilayer (BL) graphene measured by low temperature scanning tunneling
microscopy and spectroscopy. We have used this technique to map, with very high
energy and space resolution, the spatial modulations of the local density of
states of ML and BL graphene epitaxialy grown on SiC(0001), in presence of
native disorder. We perform a Fourier transform analysis of such modulations
including wavevectors up to unit-vectors of the reciprocal lattice. Our data
demonstrate that the quasiparticle interferences associated to some particular
scattering processes are suppressed in ML graphene, but not in BL graphene.
Most importantly, interferences with 2qF wavevector associated to intravalley
backscattering are not measured in ML graphene, even on the images with highest
resolution. In order to clarify the role of the pseudospin on the quasiparticle
interferences, we use a simple model which nicely captures the main features
observed on our data. The model unambiguously shows that graphene's pseudospin
is responsible for such suppression of quasiparticle interferences features in
ML graphene, in particular for those with 2qF wavevector. It also confirms
scanning tunneling microscopy as a unique technique to probe the pseudospin in
graphene samples in real space with nanometer precision. Finally, we show that
such observations are robust with energy and obtain with great accuracy the
dispersion of the \pi-bands for both ML and BL graphene in the vicinity of the
Fermi level, extracting their main tight binding parameters
Redefining the role of obstacles in pedestrian evacuation
The placement of obstacles in front of doors is believed to be an effective strategy to increase the flow of pedestrians, hence improving the evacuation process. Since it was first suggested, this counterintuitive feature is considered a hallmark of pedestrian flows through bottlenecks. Indeed, despite the little experimental evidence, the placement of an obstacle has been hailed as the panacea for solving evacuation problems. In this work, we challenge this idea and experimentally demonstrate that the pedestrians flow rate is not necessarily altered by the presence of an obstacle. This result - which is at odds with recent demonstrations on its suitability for the cases of granular media, sheep and mice - differs from the outcomes of most of existing numerical models, and warns about the risks of carelessly extrapolating animal behaviour to humans. Our experimental findings also reveal an unnoticed phenomenon in relation with the crowd movement in front of the exit: in competitive evacuations, an obstacle attenuates the development of collective transversal rushes, which are hazardous as they might cause falls.Fil: Garcimartín, A.. Universidad de Navarra; EspañaFil: Maza, D.. Universidad de Navarra; EspañaFil: Pastor, J. M.. Focke Meler Gluing Solutions S.A.; EspañaFil: Parisi, Daniel Ricardo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martín Gómez, C.. Universidad de Navarra; EspañaFil: Zuriguel, I.. Universidad de Navarra; Españ
Sensitivity of precipitation forecasts to convective parameterization in the October 2007 Flash Flood in the Valencia Region (Eastern Spain)
The Valencia region, on the Mediterranean coast of the Iberian Peninsula, is
an area prone to torrential rains, especially the north of Alicante province
and the south of Valencia province. In October 2007, a torrential rain event
with accumulated rainfall values exceeding 400 mm in less than 24 h
affected the aforementioned areas, producing flash floods that caused
extensive economic losses and human casualties. Several simulations of this
rain event have been performed with the Regional Atmospheric Modeling System
(RAMS) to test the influence of the different convective parameterization
scheme implemented in the model on the precipitation forecast
Point defects on graphene on metals
Understanding the coupling of graphene with its local environment is critical
to be able to integrate it in tomorrow's electronic devices. Here we show how
the presence of a metallic substrate affects the properties of an atomically
tailored graphene layer. We have deliberately introduced single carbon
vacancies on a graphene monolayer grown on a Pt(111) surface and investigated
its impact in the electronic, structural and magnetic properties of the
graphene layer. Our low temperature scanning tunneling microscopy studies,
complemented by density functional theory, show the existence of a broad
electronic resonance above the Fermi energy associated with the vacancies.
Vacancy sites become reactive leading to an increase of the coupling between
the graphene layer and the metal substrate at these points; this gives rise to
a rapid decay of the localized state and the quenching of the magnetic moment
associated with carbon vacancies in free-standing graphene layers
On the nature of an ejection event in the jet of 3C111
We present a possible scenario for the ejection of a superluminal component
in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI
observations at 15 GHz discovered the presence of two jet features on scales
smaller than one parsec. The first component evolves downstream, whereas the
second one fades out after 1 parsec. We propose the injection of a perturbation
of dense material followed by a decrease in the injection rate of material in
the jet as a plausible explanation. This scenario is supported by 1D
relativistic hydrodynamics and emission simulations. The perturbation is
modeled as an increase in the jet density, without modifying the original
Lorentz factor in the initial conditions. We show that an increase of the
Lorentz factor in the material of the perturbation fails to reproduce the
observed evolution of this flare. We are able to estimate the lifetime of the
ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter
Using synchronization to improve earthquake forecasting in a cellular automaton model
A new forecasting strategy for stochastic systems is introduced. It is
inspired by the concept of anticipated synchronization between pairs of chaotic
oscillators, recently developed in the area of Dynamical Systems, and by the
earthquake forecasting algorithms in which different pattern recognition
functions are used for identifying seismic premonitory phenomena. In the new
strategy, copies (clones) of the original system (the master) are defined, and
they are driven using rules that tend to synchronize them with the master
dynamics. The observation of definite patterns in the state of the clones is
the signal for connecting an alarm in the original system that efficiently
marks the impending occurrence of a catastrophic event. The power of this
method is quantitatively illustrated by forecasting the occurrence of
characteristic earthquakes in the so-called Minimalist Model.Comment: 4 pages, 3 figure
- …