26 research outputs found

    Biconical structures in two-dimensional anisotropic Heisenberg antiferromagnets

    Full text link
    Square lattice Heisenberg and XY antiferromagnets with uniaxial anisotropy in a field along the easy axis are studied. Based on ground state considerations and Monte Carlo simulations, the role of biconical structures in the transition region between the antiferromagnetic and spin--flop phases is analyzed. In particular, adding a single--ion anisotropy to the XXZ antiferromagnet, one observes, depending on the sign of that anisotropy, either an intervening biconical phase or a direct transition of first order separating the two phases. In case of the anisotropic XY model, the degeneracy of the ground state, at a critical field, in antiferromagnetic, spin--flop, and bidirectional structures seems to result, as in the case of the XXZ model, in a narrow disordered phase between the antiferromagnetic and spin--flop phases, dominated by bidirectional fluctuations.Comment: 4 pages, 5 figures, accepted by Phys. Rev.

    Classical and quantum two-dimensional anisotropic Heisenberg antiferromagnets

    Full text link
    The classical and the quantum, spin $S=1/2, versions of the uniaxially anisotropic Heisenberg antiferromagnet on a square lattice in a field parallel to the easy axis are studied using Monte Carlo techniques. For the classical version, attention is drawn to biconical structures and fluctuations at low temperatures in the transition region between the antiferromagnetic and spin-flop phases. For the quantum version, the previously proposed scenario of a first-order transition between the antiferromagnetic and spin-flop phases with a critical endpoint and a tricritical point is scrutinized.Comment: 5 pages, 7 figures, accepted by Phys. Rev.

    Ising antiferromagnet with mobile, pinned and quenched defects

    Get PDF
    Motivated by recent experiments on (Sr,Ca,La)_14 Cu_24 O_41, a two-dimensional Ising antiferromagnet with mobile, locally pinned and quenched defects is introduced and analysed using mainly Monte Carlo techniques. The interplay between the arrangement of the defects and the magnetic ordering as well as the effect of an external field are studied.Comment: 10 pages, 6 figures. Condensed Matter Physics (Festschrift in honour of R. Folk

    Quenched charge disorder in CuO2 spin chains: Experimental and numerical studies

    Full text link
    We report on measurements of the magnetic response of the anisotropic CuO_2 spin chains in lightly hole-doped La_x (Ca,Sr)_14-x Cu_24 O_41, x>=5. The experimental data suggest that in magnetic fields B >~ 4T (applied along the easy axis) the system is characterized by short-range spin order and quasi-static (quenched) charge disorder. The magnetic susceptibility chi(B) shows a broad anomaly, which we interpret as the remnant of a spin-flop transition. To corroborate this idea, we present Monte Carlo simulations of a classical, anisotropic Heisenberg model with randomly distributed, static holes. Our numerical results clearly show that the spin-flop transition of the pure model (without holes) is destroyed and smeared out due to the disorder introduced by the quasi-static holes. Both the numerically calculated susceptibility curves chi(B) and the temperature dependence of the position of the anomaly are in qualitative agreement with the experimental data.Comment: 10 pages, REVTeX4. 11 figures; v2: Fig.2 replaced, small changes in Figs.1 and 11; minor revisons in Sec. III.C; accepted by Phys. Rev.

    Two-dimensional anisotropic Heisenberg antiferromagnet in a field

    Full text link
    The classical, square lattice, uniaxially anisotropic Heisenberg antiferromagnet in a magnetic field parallel to the easy axis is studied using Monte Carlo techniques. The model displays a long-range ordered antiferromagnetic, an algebraically ordered spin-flop, and a paramagnetic phase. The simulations indicate that a narrow disordered phase intervenes between the ordered phases down to quite low temperatures. Results are compared to previous, partially conflicting findings on related classical models as well as the quantum variant with spin S=1/2.Comment: 8 pages, 9 figure

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Comment on "Frustrating interactions and broadened magnetic interactions in the edge-sharing CuO_2 chains in La_5 Ca_9 Cu_24 O_41"

    Full text link
    Using Monte Carlo techniques, we show that the two--dimensional anisotropic Heisenberg model reproducing nicely inelastic neutron scattering measurements on La_5 Ca_9 Cu_24 O_41 (Matsuda et al. [Phys. Rev. B 68, 060406(R) (2003)]) seems to be insufficient to describe correctly measurements on thermodynamic quantities like the magnetization or the susceptibility. Possible reasons for the discrepancy are suggested.Comment: 3 pages, 2 EPS figures; part (ii) rewritten, some typos corrected; final version that has been accepted for publication in Phys. Rev.

    Uniaxially anisotropic antiferromagnets in a field on a square lattice

    Full text link
    Classical uniaxially anisotropic Heisenberg and XY antiferromagnets in a field along the easy axis on a square lattice are analysed, applying ground state considerations and Monte Carlo techniques. The models are known to display antiferromagnetic and spin-flop phases. In the Heisenberg case, a single-ion anisotropy is added to the XXZ antiferromagnet, enhancing or competing with the uniaxial exchange anisotropy. Its effect on the stability of non-collinear structures of biconical type is studied. In the case of the anisotropic XY antiferromagnet, the transition region between the antiferromagnetic and spin-flop phases is found to be dominated by degenerate bidirectional fluctuations. The phase diagram is observed to resemble closely that of the XXZ antiferromagnet without single-ion anisotropy.Comment: 8 pages, 9 figures, submitted to Eur. Phys. J.

    Ising model with periodic pinning of mobile defects

    Full text link
    A two-dimensional Ising model with short-range interactions and mobile defects describing the formation and thermal destruction of defect stripes is studied. In particular, the effect of a local pinning of the defects at the sites of straight equidistant lines is analysed using Monte Carlo simulations and the transfer matrix method. The pinning leads to a long-range ordered magnetic phase at low temperatures. The dependence of the phase transition temperature, at which the defect stripes are destabilized, on the pinning strength is determined. The transition seems to be of first order, with and without pinning.Comment: 7 pages, 7 figure

    Surfing the great British Jewish web: Jewish history resources online

    No full text
    This article critically surveys online resources for Jewish history developed in the UK
    corecore