48 research outputs found

    On the Coulomb-Sturmian matrix elements of the Coulomb Green's operator

    Full text link
    The two-body Coulomb Hamiltonian, when calculated in Coulomb-Sturmian basis, has an infinite symmetric tridiagonal form, also known as Jacobi matrix form. This Jacobi matrix structure involves a continued fraction representation for the inverse of the Green's matrix. The continued fraction can be transformed to a ratio of two 2F1_{2}F_{1} hypergeometric functions. From this result we find an exact analytic formula for the matrix elements of the Green's operator of the Coulomb Hamiltonian.Comment: 8 page

    Self-dual solitons in N=2 supersymmetric semilocal Chern-Simons theory

    Get PDF
    We embed the semilocal Chern-Simons-Higgs theory into an N=2 supersymmetric system. We construct the corresponding conserved supercharges and derive the Bogomol'nyi equations of the model from supersymmetry considerations. We show that these equations hold provided certain conditions on the coupling constants as well as on the Higgs potential of the system, which are a consequence of the huge symmetry of the theory, are satisfied. They admit string-like solutions which break one half of the supersymmetries --BPS Chern-Simons semilocal cosmic strings-- whose magnetic flux is concentrated at the center of the vortex. We study such solutions and show that their stability is provided by supersymmetry through the existence of a lower bound for the energy, even though the manifold of the Higgs vacuum does not contain non-contractible loops.Comment: 12 pages, LaTeX, no figures, to appear in Modern Physics Letters

    Extended Superconformal Galilean Symmetry in Chern-Simons Matter Systems

    Full text link
    We study the nonrelativistic limit of the N=2N=2 supersymmetric Chern-Simons matter system. We show that in addition to Galilean invariance the model admits a set of symmetries generated by fermionic charges, which can be interpreted as an {\it extended Galilean supersymmetry }. The system also possesses a hidden conformal invariance and then the full group of symmetries is the {\it extended superconformal Galilean} group. We also show that imposing extended superconformal Galilean symmetry determines the values of the coupling constants in such a way that their values in the bosonic sector agree with the values of Jackiw and Pi for which self-dual equation exist. We finally analyze the second quantized version of the model and the two-particle sector.Comment: 32 double-spaced page

    Phases of dual superconductivity and confinement in softly broken N=2 supersymmetric Yang-Mills theories

    Get PDF
    We study the electric flux tubes that undertake color confinement in N=2 supersymmetric Yang-Mills theories softly broken down to N=1 by perturbing with the first two Casimir operators. The relevant Abelian Higgs model is not the standard one due to the presence of an off-diagonal coupling among different magnetic U(1) factors. We perform a preliminary study of this model at a qualitative level. BPS vortices are explicitely obtained for particular values of the soft breaking parameters. Generically however, even in the ultrastrong scaling limit, vortices are not critical but live in a "hybrid" type II phase. Also, ratios among string tensions are seen to follow no simple pattern. We examine the situation at the half Higgsed vacua and find evidence for solutions with the behaviour of superconducting strings. In some cases they are solutions to BPS equations.Comment: 15 pages, 1 figure, revtex; v2: typos corrected, final versio

    Quantum corrections to the mass of the supersymmetric vortex

    Full text link
    We calculate quantum corrections to the mass of the vortex in N=2 supersymmetric abelian Higgs model in (2+1) dimensions. We put the system in a box and apply the zeta function regularization. The boundary conditions inevitably violate a part of the supersymmetries. Remaining supersymmetry is however enough to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A non-zero correction to the mass of the vortex comes from finite renormalization of couplings.Comment: Latex, 18 pp; v2 reference added; v3 minor change

    Static solitons with non-zero Hopf number

    Get PDF
    We investigate a generalized non-linear O(3) σ\sigma-model in three space dimensions where the fields are maps S3↩S2S^3 \mapsto S^2. Such maps are classified by a homotopy invariant called the Hopf number which takes integer values. The model exhibits soliton solutions of closed vortex type which have a lower topological bound on their energies. We explicitly compute the fields for topological charge 1 and 2 and discuss their shapes and binding energies. The effect of an additional potential term is considered and an approximation is given for the spectrum of slowly rotating solitons.Comment: 13 pages, RevTeX, 7 Postscript figures, minor changes have been made, a reference has been corrected and a figure replace

    Supersymmetric Electroweak Cosmic Strings

    Get PDF
    We study the connection between N=2N=2 supersymmetry and a topological bound in a two-Higgs-doublet system with an SU(2)×U(1)Y×U(1)Yâ€ČSU(2)\times U(1)_Y\times U(1)_{Y^{\prime}} gauge group. We derive the Bogomol'nyi equations from supersymmetry considerations showing that they hold provided certain conditions on the coupling constants, which are a consequence of the huge symmetry of the theory, are satisfied. Their solutions, which can be interpreted as electroweak cosmic strings breaking one half of the supersymmetries of the theory, are studied. Certain interesting limiting cases of our model which have recently been considered in the literature are finally analyzed.Comment: 20 pages, RevTe

    Bogomol'nyi Equations of Maxwell-Chern-Simons vortices from a generalized Abelian Higgs Model

    Full text link
    We consider a generalization of the abelian Higgs model with a Chern-Simons term by modifying two terms of the usual Lagrangian. We multiply a dielectric function with the Maxwell kinetic energy term and incorporate nonminimal interaction by considering generalized covariant derivative. We show that for a particular choice of the dielectric function this model admits both topological as well as nontopological charged vortices satisfying Bogomol'nyi bound for which the magnetic flux, charge and angular momentum are not quantized. However the energy for the topolgical vortices is quantized and in each sector these topological vortex solutions are infinitely degenerate. In the nonrelativistic limit, this model admits static self-dual soliton solutions with nonzero finite energy configuration. For the whole class of dielectric function for which the nontopological vortices exists in the relativistic theory, the charge density satisfies the same Liouville equation in the nonrelativistic limit.Comment: 30 pages(4 figures not included), RevTeX, IP/BBSR/93-6

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S→43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S→33P→n3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S→21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions

    Get PDF
    A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the e++He^++H system both below and above the H(n=2)H(n=2) threshold. We found excellent agreements with previous calculations in most cases.Comment: 12 pages, 3 figure
    corecore