70 research outputs found

    Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from Cape Verde Islands

    Get PDF
    The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.The authors thank the Cape Verde Ministry of Environment (General Direction for the Environment), INDP (National Fisheries Institution), the Canary Islands Government (D.G. Africa and D.G. Research and Universities), ICCM (Canarian Institution for Marine Sciences), the Andalusian Government (Andalusian Environmental Office) and AEGINA PROJECT (INTERREG IIIB) for funding and hosting them during this study. The authors also thank the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme, and national funds through FCT - PEst-C/MAR/LA0015/2011 for supporting the biochemical analysis

    Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    Get PDF
    Background: The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks

    The Making of a Productivity Hotspot in the Coastal Ocean

    Get PDF
    Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators.) off the Baja California peninsula, Mexico.We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern

    Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting

    Get PDF
    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence

    Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and ÎŽ15N Analysis of Amino Acids

    Get PDF
    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in ή15N values of bulk skin, with distinct “low ή15N” and “high ή15N” groups. ή15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin ή15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific

    Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    Get PDF
    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic

    Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles

    Get PDF
    Determining the time of day that animals initiate and end migration, as well as variation in diel movement patterns during migration, provides insights into the types of strategy used to maximise energy efficiency and ensure successful completion of migration. However, obtaining this level of detail has been difficult for long-distance migratory marine species. Thus, we investigated whether the large volume of highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters could be used to identify the time of day that adult green (n = 8 turtles, 9487 locations) and loggerhead (n = 46 turtles, 47,588 locations) sea turtles initiate and end migration, along with potential resting strategies during migration. We found that departure from and arrival at breeding, stopover and foraging sites consistently occurred during the daytime, which is consistent with previous findings suggesting that turtles might use solar visual cues for orientation. Only seven turtles made stopovers (of up to 6 days and all located close to the start or end of migration) during migration, possibly to rest and/or refuel; however, observations of day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles travelled 31% slower at night compared to day during their oceanic crossings. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration, some individuals travelled 72% slower at night, repeating this behaviour intermittently (each time for a one-night duration at 3–6 day intervals) until reaching the foraging grounds. Thus, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in day versus night activity at different stages in migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species

    An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator

    No full text
    Neuronal Cdc2-like kinase is a heterodimer of Cdk5 and a 25-kDa subunit that is derived from a 35-kDa brain- and neuron-specific protein called the neuronal Cdk5 activator (p35/p25(nck5a)) (Lew, J., Huang, Q.-Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., and Wang, J. H. (1994) Nature 371, 423-426; Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., and Harlow, E. (1994) Nature 371, 419-423). Upon screening of a human hippocampus library with a bovine Nck5a cDNA, we uncovered a distinct clone encoding a 39-kDa isoform of Nck5a. The isoform, designated the neuronal Cdk5 activator isoform (p39(nck5ai)), showed a high degree of sequence similarity to p35(nck5a) with 57% amino acid identity. Northern blot analysis detected its mRNA transcript in bovine and rat cerebrum and cerebellum, but not in any other rat tissues examined. In situ hybridization showed that Nck5ai was enriched in CA1 to CA3 of the hippocampus, but absent in the fimbria of hippocampal formation. Among seven cell lines in proliferating cultures, only PC12 and N2A, two cell lines capable of differentiating into neuron-like cells, were found to contain Nck5ai mRNA. A 30-kDa truncated form of Nck5ai expressed as a glutathione S-transferase fusion protein in Escherichia coli] was found to associate with Cdk5 to form an active Cdk5 kinase. Thus, the isoform shares many common characteristics with p35(nck5a), including Ckd5 activating activity and brain- and neuron-specific expression. Both proteins show limited sequence homology to cyclins, suggesting that they define a new family of cyclin-dependent kinase-activating proteins
    • 

    corecore