40 research outputs found
Synthesis and catalytic performance of CeOCl in Deacon reaction
Surface chlorinated CeO2 is an efficient material for HCl oxidation, which raises the question whether an oxychloride phase could be also active in the same reaction. CeOCl was synthesized by solid state reaction of cerium oxide with anhydrous cerium chloride and tested in HCl oxidation using various feed compositions at 703 K. X-ray diffraction of post-reaction samples revealed that CeOCl is unstable, in both oxygen-rich and -lean conditions. Applying oxygen over-stoichiometric feeds led to complete transformation of CeOCl into CeO2. Considerable HCl conversions were obtained only after this transformation, which confirms the essential role of bulk cerium oxide in this catalytic system
Quantum Arrival and Dwell Times via Idealised Clocks
A number of approaches to the problem of defining arrival and dwell time
probabilities in quantum theory make use of idealised models of clocks. An
interesting question is the extent to which the probabilities obtained in this
way are related to standard semiclassical results. In this paper we explore
this question using a reasonably general clock model, solved using path
integral methods. We find that in the weak coupling regime where the energy of
the clock is much less than the energy of the particle it is measuring, the
probability for the clock pointer can be expressed in terms of the probability
current in the case of arrival times, and the dwell time operator in the case
of dwell times, the expected semiclassical results. In the regime of strong
system-clock coupling, we find that the arrival time probability is
proportional to the kinetic energy density, consistent with an earlier model
involving a complex potential. We argue that, properly normalized, this may be
the generically expected result in this regime. We show that these conclusions
are largely independent of the form of the clock Hamiltonian.Comment: 19 pages, 4 figures. Published versio
Witnessing incompatibility of quantum channels
We introduce the notion of incompatibility witness for quantum channels, defined as an affine functional that is non-negative on all pairs of compatible channels and strictly negative on some incompatible pair. This notion extends the recent definition of incompatibility witnesses for quantum measurements. We utilize the general framework of channels acting on arbitrary finite-dimensional von Neumann algebras, thus allowing us to investigate incompatibility witnesses on measurement-measurement, measurement-channel, and channel-channel pairs. We prove that any incompatibility witness can be implemented as a state discrimination task in which some intermediate classical information is obtained before completing the task. This implies that any incompatible pair of channels gives an advantage over compatible pairs in some such state discrimination task
Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence
The performance in heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes (e.g., the different surface chemical reactions, and the dynamic restructuring of the catalyst material at reaction conditions). Modeling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (“materials genes”) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of “clean data,” containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design
“Divide and conquer”. Anti-racist and minority organising under austerity
This paper examines the effects of austerity on anti-racist and community organizing. We focus on three key shifts: changes to public funding, the push to entrepreneurialism and the mainstreaming of Equalities legislation. The paper contributes to critical understandings of the changing relationship between civil society and the state and the challenges this creates for working against racism. We highlight how austerity acts as an alibi to further diminish race as a policy concern. Organizations and activists are encouraged to act as entrepreneurs and confront each other as competitors, rather than allies in a political struggle. This leads to a very real sense that solidarities are being deliberately ruptured in order to “divide and conquer” and diminish collective organizing capacity. We illustrate how this is compounded by the cumulative affective consequences of austerity measures, often at considerable costs in terms of a broader collective agenda
The electronic structure of iridium oxide electrodes active in water splitting
Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with IrIII. These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts
Towards Experimental Handbooks in Catalysis
The “Seven Pillars” of oxidation catalysis proposed by Robert K. Grasselli represent an early example of phenomenological descriptors in the field of heterogeneous catalysis. Major advances in the theoretical description of catalytic reactions have been achieved in recent years and new catalysts are predicted today by using computational methods. To tackle the immense complexity of high-performance systems in reactions where selectivity is a major issue, analysis of scientific data by artificial intelligence and data science provides new opportunities for achieving improved understanding. Modern data analytics require data of highest quality and sufficient diversity. Existing data, however, frequently do not comply with these constraints. Therefore, new concepts of data generation and management are needed. Herein we present a basic approach in defining best practice procedures of measuring consistent data sets in heterogeneous catalysis using “handbooks”. Selective oxidation of short-chain alkanes over mixed metal oxide catalysts was selected as an example.DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat