15 research outputs found

    Author Correction: The Expression Analysis of Intestinal Cancer Stem Cell Marker Lgr5 in Colorectal Cancer Patients and the Correlation with Histopathological Markers (Journal of Gastrointestinal Cancer, (2020), 51, 2, (591-599), 10.1007/s12029-019-00295-w)

    Get PDF
    The original version of this article unfortunately contained a mistake. In the author group section, the correct name of the first author is �Shirin Salehzadeh.� The authors apologize for this oversight and for any confusion it may have caused. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    A preliminary study of NER and MMR pathways involved in chemotherapy response in bladder transitional cell carcinoma: Impact on progression-free survival

    Get PDF
    One of the main genotoxic drugs used in bladder cancer chemotherapy is cisplatin. While it is applied in most types of cancers, resistance to cisplatin is wildly common. In order to overcome drug resistance, it is necessary to determine a predictive marker. This study was conducted to provide basic data for selecting and designing a gene profile for further cohort and RCT studies in the future to improve response to treatment in bladder cancer. The expression levels of ERCC1, MLH1, MSH2, and CTR1 mRNA were determined in the tumor tissue using real-time q-PCR. Progression-free survival (PFS) was analyzed in term of the level of genes expression. The results revealed that the level of ERCC1 mRNA expression was higher in the recurrence (R) group compared to the no recurrence (NR) group. Moreover, the PFS time was increased in the patients with an ERCC1 expression level of below 1.57. The level of MLH1 and MSH2 mRNA expression was lower in the R group compared to the NR group; therefore, PFS time was increased in the patients with MLH1 and MSH2 gene expression levels above the cutoff point. While the level of CTR1 mRNA expression was higher in the R group versus the NR group, the PFS time was longer in the patients with CTR1 expression levels of below 1.265 compared to the patients with high levels of CTR1 expression. It can be concluded that the level of ERCC1, MLH1, MSH2, and CTR1 mRNA expression may be associated with PFS time as possible therapeutic targets for decreasing cisplatin resistance. © 2020, Iranian Journal of Pharmaceutical Research. All rights reserved

    Space Vector Modulation Technique to Reduce Leakage Current of a Transformerless Three-Phase Four-Leg Photovoltaic System

    No full text
    Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer) or without it (transformerless). Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC)) through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV), and total harmonic distortion (THD). An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique

    The Expression Analysis of Intestinal Cancer Stem Cell Marker Lgr5 in Colorectal Cancer Patients and the Correlation with Histopathological Markers

    No full text
    Introduction: Cancer stem cells (CSCs) have frequently been utilized in the cell characterization and identified responsible for tumor development, metastasis, recurrence, and chemoresistance. CSC surface markers function in cancer cell signaling and are indicated as potential biomarkers for cancer diagnosis and prognosis. As well, dysregulation of cancer-related signaling pathways could promote CSC development and progression. Our aim was to evaluate the expression of colorectal CSC markers and their correlation with cancer proliferation and angiogenesis. Methods: In this case-control study, total RNA was extracted from a total of 74 colorectal tumors and 74 adjacent normal tissue biopsies. Then, using a quantitative real-time PCR, the relative expression levels of Lgr5 and Lrig1 were measured in all malignant and healthy samples. Also, immunohistochemical (IHC) staining of tumor tissues was performed for Ki-67 (proliferation) and CD34 (angiogenesis) markers, and the immunoexpression staining scores were obtained. The diagnostic value of the genes was evaluated using receiver operating characteristic (ROC) curve. Possible correlation between CSC markers and immunohistochemical markers in CRC was analyzed by Pearson�s correlation test and linear regression. Results: The expression level of Lgr5 in tumor samples showed a significant increase compared with normal samples (p < 0.001) with a fold change of 2.54 (± 0.182). However, there was no significant difference in the relative expression of Lrig1 gene in tissue samples of healthy subjects and patients. The analysis of the ROC showed an AUC of 0.92 for Lgr5 and sensitivity 80 and specificity 96. Further analysis revealed a significant correlation between mRNA levels of Lgr5 and immunoexpression of Ki-67 (r2 = 0.680, p < 0.001). Conclusion: The high expression levels of Lgr5 found in tumor tissues were correlated with histological parameters, indicating a significant role in CRC development and diagnosis. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    VDR gene polymorphisms are associated with the increased susceptibility to COVID-19 among iranian population: A case-control study

    No full text
    Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the pathogenesis is unclear. Host genetic background is one of the main factors influencing the patients' susceptibility to several viral infectious diseases. This study aimed to investigate the association between host genetic polymorphisms of two genes, including vitamin D receptor (VDR) and vitamin D binding protein (DBP), and susceptibility to COVID-19 in a sample of the Iranian population. This case-control study enrolled 188 hospitalized COVID-19 patients as the case group and 218 suspected COVID-19 patients with mild signs as the control group. The VDR (rs7975232, rs731236 and rs2228570) and DBP (rs7041) gene single nucleotide polymorphisms (SNPs) were genotyped by Polymerase Chain Reaction Restriction - Fragment Length Polymorphism (PCR-RFLP) method. A significant association between rs2228570 SNP in the VDR gene and the susceptibility of COVID-19 was found between case and control groups. The CT genotype (Heterozygous) of rs2228570 C > T polymorphism showed significant association with a 3.088 fold increased odds of COVID-19 (p .05). Our results showed that polymorphism of VDR (rs2228570) probably could influence individual susceptibility to COVID-19. The polymorphisms of VDR (rs7975232 and rs731236) and DBP (rs7041) were not associated with SARS-CoV-2 infection susceptibility
    corecore