4,044 research outputs found

    Universal Scaling in Non-equilibrium Transport Through a Single-Channel Kondo Dot

    Full text link
    Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. Here we present measurements of non-equilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. The non-equilibrium Kondo transport measurements are well-described by a universal scaling function with two scaling parameters.Comment: v2: improved introduction and theory-experiment comparsio

    Recent advances in minimally invasive colorectal cancer surgery

    Get PDF
    Laparoscopy has improved surgical treatment of various diseases due to its limited surgical trauma and has developed as an interesting therapeutic alternative for the resection of colorectal cancer. Despite numerous clinical advantages (faster recovery, less pain, fewer wound and systemic complications, faster return to work) the laparoscopic approach to colorectal cancer therapy has also resulted in unusual complications, i.e. ureteral and bladder injury which are rarely observed with open laparotomy. Moreover, pneumothorax, cardiac arrhythmia, impaired venous return, venous thrombosis as well as peripheral nerve injury have been associated with the increased intraabdominal pressure as well as patient's positioning during surgery. Furthermore, undetected small bowel injury caused by the grasping or cauterizing instruments may occur with laparoscopic surgery. In contrast to procedures performed for nonmalignant conditions, the benefits of laparoscopic resection of colorectal cancer must be weighed against the potential for poorer long-term outcomes of cancer patients that still has not been completely ruled out. In laparoscopic colorectal cancer surgery, several important cancer control issues still are being evaluated, i.e. the extent of lymph node dissection, tumor implantation at port sites, adequacy of intraperitoneal staging as well as the distance between tumor site and resection margins. For the time being it can be assumed that there is no significant difference in lymph node harvest between laparoscopic and open colorectal cancer surgery if oncological principles of resection are followed. As far as the issue of port site recurrence is concerned, it appears to be less prevalent than first thought (range 0-2.5%), and the incidence apparently corresponds with wound recurrence rates observed after open procedures. Short-term (3-5 years) survival rates have been published by a number of investigators, and survival rates after laparoscopic surgery appears to compare well with data collected after conventional surgery for colorectal cancer. However, long-term results of prospective randomized trials are not available. The data published so far indicate that the oncological results of laparoscopic surgery compare well with the results of the conventional open approach. Nonetheless, the limited information available from prospective studies leads us to propose that minimally invasive surgery for colorectal cancer surgery should only be performed within prospective trials

    N-particle sector of quantum field theory as a quantum open system

    Full text link
    We give an exposition of a technique, based on the Zwanzig projection formalism, to construct the evolution equation for the reduced density matrix corresponding to the n-particle sector of a field theory. We consider the case of a scalar field with a gϕ3g \phi^3 interaction as an example and construct the master equation at the lowest non-zero order in perturbation theory.Comment: 12 pages, Late

    Recent discoveries of supersoft X-ray sources in M 31

    Get PDF
    Classical novae (CNe) have recently been reported to represent the major class of supersoft X-ray sources (SSSs) in the central area of our neighbouring galaxy M 31. This paper presents a review of results from recent X-ray observations of M 31 with XMM-Newton and Chandra. We carried out a dedicated optical and X-ray monitoring program of CNe and SSSs in the central area of M 31. We discovered the first SSSs in M 31 globular clusters (GCs) and their connection to the very first discovered CN in a M 31 GC. This result may have an impact on the CN rate in GCs. Furthermore, in our optical and X-ray monitoring data we discovered the CN M31N 2007-11a, which shows a very short SSS phase of 29 - 52 days. Short SSS states (durations < 100 days) of CNe indicate massive white dwarfs (WDs) that are candidate progenitors of supernovae type Ia. In the case of M31N 2007-11a, the optical and X-ray light curves suggest a binary containing a WD with M_WD > 1.0 M_sun. Finally, we present the discovery of the SSS counterpart of the CN M31N 2006-04a. The X-ray light curve of M31N 2006-04a shows short-time variability, which might indicate an orbital period of about 2 hours.Comment: 4 pages, 1 figure; Proc. of workshop "Supersoft X-ray Sources - New Developments", ESAC, May 2009; accepted for publication in Astronomische Nachrichte

    Algebraic characterization of X-states in quantum information

    Get PDF
    A class of two-qubit states called X-states are increasingly being used to discuss entanglement and other quantum correlations in the field of quantum information. Maximally entangled Bell states and "Werner" states are subsets of them. Apart from being so named because their density matrix looks like the letter X, there is not as yet any characterization of them. The su(2) X su(2) X u(1) subalgebra of the full su(4) algebra of two qubits is pointed out as the underlying invariance of this class of states. X-states are a seven-parameter family associated with this subalgebra of seven operators. This recognition provides a route to preparing such states and also a convenient algebraic procedure for analytically calculating their properties. At the same time, it points to other groups of seven-parameter states that, while not at first sight appearing similar, are also invariant under the same subalgebra. And it opens the way to analyzing invariant states of other subalgebras in bipartite systems.Comment: 4 pages, 1 figur

    The temperature dependent bandstructure of a ferromagnetic semiconductor film

    Full text link
    The electronic quasiparticle spectrum of a ferromagnetic film is investigated within the framework of the s-f model. Starting from the exact solvable case of a single electron in an otherwise empty conduction band being exchange coupled to a ferromagnetically saturated localized spin system we extend the theory to finite temperatures. Our approach is a moment-conserving decoupling procedure for suitable defined Green functions. The theory for finite temperatures evolves continuously from the exact limiting case. The restriction to zero conduction band occupation may be regarded as a proper model description for ferromagnetic semiconductors like EuO and EuS. Evaluating the theory for a simple cubic film cut parallel to the (100) crystal plane, we find some marked correlation effects which depend on the spin of the test electron, on the exchange coupling, and on the temperature of the local-moment system.Comment: 11 pages, 9 figure

    Are N=1 and N=2 supersymmetric quantum mechanics equivalent?

    Full text link
    After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.Comment: 15 page

    Making SPIFFI SPIFFIER: Upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    Full text link
    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.Comment: 20 pages, 12 figures. Proceedings from SPIE Astronomical Telescopes and Instrumentation 201

    Feed-Forward Chains of Recurrent Attractor Neural Networks Near Saturation

    Full text link
    We perform a stationary state replica analysis for a layered network of Ising spin neurons, with recurrent Hebbian interactions within each layer, in combination with strictly feed-forward Hebbian interactions between successive layers. This model interpolates between the fully recurrent and symmetric attractor network studied by Amit el al, and the strictly feed-forward attractor network studied by Domany et al. Due to the absence of detailed balance, it is as yet solvable only in the zero temperature limit. The built-in competition between two qualitatively different modes of operation, feed-forward (ergodic within layers) versus recurrent (non- ergodic within layers), is found to induce interesting phase transitions.Comment: 14 pages LaTex with 4 postscript figures submitted to J. Phys.
    • …
    corecore