16,809 research outputs found

    Energy management of three-dimensional minimum-time intercept

    Get PDF
    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission

    An on-board near-optimal climb-dash energy management

    Get PDF
    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path

    Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence

    Full text link
    We introduce a novel algorithm for the task of coherently controlling a quantum mechanical system to implement any chosen unitary dynamics. It performs faster than existing state of the art methods by one to three orders of magnitude (depending on which one we compare to), particularly for quantum information processing purposes. This substantially enhances the ability to both study the control capabilities of physical systems within their coherence times, and constrain solutions for control tasks to lie within experimentally feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR

    Optimal symmetric flight with an intermediate vehicle model

    Get PDF
    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems

    Quantifying stretching and rearrangement in epithelial sheet migration

    Get PDF
    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration. By decomposing the motion of the cells into affine and non-affine components using the metric Dmin2^{2}_{min}, we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.Comment: 21 pages, 7 figures This is an author-created, un-copyedited version of an article accepted for publication in the New Journal of Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1367-2630/15/2/02503

    Spitzer Observations of Spacecraft Target 162173 (1999 JU3)

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is the primary target of the Hayabusa-2 sample return mission, and a potential target of the Marco Polo sample return mission. Earth-based studies of this object are fundamental to these missions. We present a mid-infrared spectrum (5-38 microns) of 1999 JU3 obtained with NASA's Spitzer Space Telescope in May 2008. These observations place new constraints on the surface properties of this asteroid. To fit our spectrum we used the near-Earth asteroid thermal model (NEATM) and the more complex thermophysical model (TPM). However, the position of the spin-pole, which is uncertain, is a crucial input parameter for constraining the thermal inertia with the TPM; hence, we consider two pole orientations. In the extreme case of an equatorial retrograde geometry we derive a lower limit to the thermal inertia of 150 J/m^2/K/s^0.5. If we adopt the pole orientation of Abe et al. (2008a) our best-fit thermal model yields a value for the thermal inertia of 700+/-200 J/m^2/K/s^0.5 and even higher values are allowed by the uncertainty in the spectral shape due to the absolute flux calibration. The lower limit to the thermal inertia, which is unlikely but possible, would be consistent with a fine regolith similar to wthat is found for asteroid 433 Eros. However, the thermal inertia is expected to be higher, possibly similar to or greater than that on asteroid 25143 Itokawa. Accurately determining the spin-pole of asteroid 162173 will narrow the range of possible values for its thermal inertia.Comment: 4 pages, 2 figures; to be published as a Letter in Astronomy and Astrophysic

    Temperature dependence of the superconducting gap anisotropy in Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}O8+x_{8+x}

    Full text link
    We present the first detailed data of the momentum-resolved, temperature dependence of the superconducting gap of Bi2Sr2Ca1Cu2O8+xBi_{2}Sr_{2}Ca_{1}Cu_{2}O_{8+x}, complemented by similar data on the intensity of the photoemission superconducting condensate spectral area. The gap anisotropy between the ΓMˉ\Gamma-\bar{M} and ΓX\Gamma-X directions increases markedly with increasing temperature, contrary to what happens for conventional anisotropic-gap superconductors such as lead. Specifically, the size of the superconducting gap along the ΓX\Gamma-X direction decreases to values indistinguishable from zero at temperatures for which the gap retains virtually full value along the ΓMˉ\Gamma-\bar{M} direction.Comment: APS_REVTEX. 19 pages, including 8 figures, available upon request. UW-Madison preprin

    Consumer Interest in Gardening Topics and Preferred Information Sources

    Get PDF
    A survey was conducted to quantify what gardening topics consumers were interested in learning and what sources they used to learn about these topics. Approximately half of the participants (48.2%) responded that they were currently interested in a topic. Friend/neighbor/family members (53.4%), garden center staff (51.0%), and gardening books (48.2%) were the most popular sources for this information. University Web sites, Extension offices, and Master Gardener programs were among the least five sources used. Survey results can help Extension personnel with consumer horticulture responsibilities provide appropriate information to consumers. Results can also help provide a measure of Extension impact

    Localization Effects in Bi2Sr2Ca(Cu,Co)2O8+y High Temperature Superconductors

    Full text link
    Doping Bi2Sr2Ca1Cu2O8+y with Co causes a superconductor-insulator transition. We study correlations between changes in the electrical resistivity RHOab(T) and the electronic bandstructure using identical single crystalline samples. For undoped samples the resistivity is linear in temperature and has a vanishing residual resistivity. In angle resolved photoemission these samples show dispersing band-like states. Co-doping decreases TC and causes and increase in the residual resistivity. Above a threshold Co-concentration the resistivity is metallic (drab/dT >0) at room temperature, turns insulating below a characteristic temperature Tmin and becomes super- conducting at even lower temperature. These changes in the resistivity correlate with the disappearance of the dispersing band-like states in angle resolved photoemission. We show that Anderson localization caused by the impurity potential of the doped Co-atoms provides a consistent explanation of all experimental features. Therefore the TC reduction in 3d-metal doped high- temperature superconductors is not caused by Abrikosov Gor'kov pair- breaking but by spatial localization of the carriers. The observed suppression of TC indicates that the system is in the homogenous limit of the superconductor-insulator transition. The coexistance of insulating (dRHOab/dT <0) normal state behavior and super- conductivity indicates that the superconducting ground state is formed out of spatially almost localized carriers.Comment: Postscript file 11 pages plus 4 figures available on reques

    Climb-dash real-time calculations

    Get PDF
    On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented
    corecore