196 research outputs found

    State-space modelling for heater induced thermal effects on LISA pathfinder's test masses

    Get PDF
    The OSE (Offline Simulations Environment) simulator of the LPF (LISA Pathfinder) mission is intended to simulate the different experiments to be carried out in flight. Amongst these, the thermal diagnostics experiments are intended to relate thermal disturbances and interferometer readouts, thereby allowing the subtraction of thermally induced interferences from the interferometer channels. In this paper we report on the modelling of these simulated experiments, including the parametrisation of different thermal effects (radiation pressure effect, radiometer effect) that will appear in the Inertial Sensor environment of the LTP (LISA Technology Package). We report as well how these experiments are going to be implemented in the LTPDA toolbox, which is a dedicated tool for LPF data analysis that will allow full traceability and reproducibility of the analysis thanks to complete recording of the processes.Postprint (published version

    Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies

    Get PDF
    This is an open-access paper.-- et al.A multistep model has been proposed of disease progression starting in monoclonal gammopathy of undetermined significance continuing through multiple myeloma, sometimes with an intermediate entity called smoldering myeloma, and ending in extramedullary disease. To gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell to a clonal plasma cell, and from an indolent clonal plasma cell to a malignant plasma cell, we performed gene expression profiling in 20 patients with monoclonal gammopathy of undetermined significance, 33 with high-risk smoldering myeloma and 41 with multiple myeloma. The analysis showed that 126 genes were differentially expressed in monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma as compared to normal plasma cell. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules and zinc finger proteins. Several proapoptotic genes (AKT1 and AKT2) were down-regulated and antiapoptotic genes (APAF1 and BCL2L1) were up-regulated in multiple myeloma, both symptomatic and asymptomatic, compared to monoclonal gammopathy of undetermined significance. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation. In conclusion, our data show that although monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma are not clearly distinguishable groups according to their gene expression profiling, several signaling pathways and genes were significantly deregulated at different steps of the transformation process.This study was partially supported by Spanish FIS (PI080568, PS09/01450 and PS0901897), “Gerencia Regional de Salud, Junta de Castilla y León” (GRS 702/A/11) grant, and the Spanish Myeloma Network Program (RD06/0020/0006, RD12/0036/0058 and RD12/0036/0046).Peer Reviewe

    The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma

    Get PDF
    Letter to the editor.-- et al.This study was supported by the Cooperative Research Thematic Network grants RD12/0036/0058 of the Red de Cancer (Cancer Network of Excellence); Instituto de Salud Carlos III, Spain, Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS: PI060339; 06/1354; 02/0905; 01/0089/01-02; PS09/01897/01370; G03/136; Sara Borrell: CD13/00340); and Asociación Española Contra el Cáncer (GCB120981SAN), Spain. The study was also supported internationally by the International Myeloma Foundation Junior Grant Proposal and the Multiple Myeloma Research Foundation research fellow award.Peer Reviewe

    A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control

    Get PDF
    GEM (Grupo Español de MM)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas) cooperative study group: et al.Achieving complete remission (CR) in multiple myeloma (MM) translates into extended survival, but two subgroups of patients fall outside this paradigm: cases with unsustained CR, and patients that do not achieve CR but return into a monoclonal gammopathy of undetermined significance (MGUS)-like status with long-term survival. Here, we describe a novel automated flow cytometric classification focused on the analysis of the plasma-cell compartment to identify among newly diagnosed symptomatic MM patients (N=698) cases with a baseline MGUS-like profile, by comparing them to MGUS (N=497) patients and validating the classification model in 114 smoldering MM patients. Overall, 59 symptomatic MM patients (8%) showed an MGUS-like profile. Despite achieving similar CR rates after high-dose therapy/autologous stem cell transplantation vs other MM patients, MGUS-like cases had unprecedented longer time-to-progression (TTP) and overall survival (OS; ∼60% at 10 years; P<0.001). Importantly, MGUS-like MM patients failing to achieve CR showed similar TTP (P=0.81) and OS (P=0.24) vs cases attaining CR. This automated classification also identified MGUS patients with shorter TTP (P=0.001, hazard ratio: 5.53) and ultra-high-risk smoldering MM (median TTP, 15 months). In summary, we have developed a biomarker that identifies a subset of symptomatic MM patients with an occult MGUS-like signature and an excellent outcome, independently of the depth of response.Peer Reviewe

    The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma

    Get PDF
    [EN]Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.Array BioPharma, the Spanish ISCIII-FIS and FEDER, the Spanish RTICC, Spanish Association Against Cancer (AECC) and the Regional Council of Castilla y León (Consejería de Medicina y Educación)

    Vaccinate fast but leave no one behind: a call to action for COVID-19 vaccination in Spain

    Get PDF
    During the first five months of 2021, Spains COVID-19 vaccination campaign progressed slowly and failed to reach marginalised populations. Here, we discuss how, despite recent improvements, it remains important to further engage key stakeholders to ensure nobody is left behind

    Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma

    Get PDF
    Background: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. Methods: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. Results: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. Conclusions: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.This work was supported by funding from Spanish FIS (PI15/00067, PI15/02156 and PI18/01600) and FEDER, AECC (GCB120981SAN), Junta de Castilla y León, Consejería de Sanidad (GRS 862/A/13 and BIO/SA05/14), Fundación Memoria de D. Samuel Solórzano Barruso of the University of Salamanca (FS/22-2015), Fundación Ramón Areces (FRA16/003), Sociedad Española de Hematología y Hemoterapia and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León. E.M.O. was supported by an Inplant grant from IDIVAL. T.P. is supported by a grant from AECC (INVES18043PAÍN)

    Synergistic DNA-damaging effect in multiple myeloma with the combination of zalypsis, bor tezomib and dexamethasone

    Get PDF
    Despite new advances in multiple myeloma treatment and the consequent improvement in overall survival, most patients relapse or become refractory to treatment. This suggests that new molecules and combinations that may further inhibit important survival pathways for these tumor cells are needed. In this context, zalypsis is a novel compound, derived from marine organisms, with a powerful preclinical anti-myeloma effect based on the sensitivity of malignant plasma cells to DNA-damage induction; and it has already been tested in a phase I/II clinical trial in multiple myeloma. We hypothesized that the addition of this compound to the combination of bortezomib plus dexamethasone may improve efficacy with acceptable toxicity. The triple combination demonstrated strong synergy and higher efficacy compared with double combinations; not only in vitro, but also ex vivo and, especially, in in vivo experiments. The triple combination triggers cell death, mainly through a synergistic induction of DNA damage and a decrease in the nuclear localization of nuclear factor kappa B. Our findings support the clinical evaluation of this combination for relapsed and refractory myeloma patients.This work was in part funded by the Spanish ISCIII-FIS (PI 15/0067 and PI15/02156) and FEDER, the Spanish RTICC (RD12/0036/0058), "Asociación Española Contra el Cancer" (AECC, GCB120981SAN), the regional Council from “Castilla y León” (GRS 1175/A/15 and FIC335U14) and a research grant from Pharmamar SAU. MMS were also supported by the Network of Centers for Regenerative Medicine and Cellular Therapy from Castilla y León, Spain. A-A López-Iglesias was supported by a grant from the Spanish Society of Hematology and Hemotherapy.Peer Reviewe

    In vivo murine model of acquired resistance in myeloma reveals differential mechanisms for lenalidomide and pomalidomide in combination with dexamethasone

    Get PDF
    The development of resistance to therapy is unavoidable in the history of multiple myeloma patients. Therefore, the study of its characteristics and mechanisms is critical in the search for novel therapeutic approaches to overcome it. This effort is hampered by the absence of appropriate preclinical models, especially those mimicking acquired resistance. Here we present an in vivo model of acquired resistance based on the continuous treatment of mice bearing subcutaneous MM1S plasmacytomas. Xenografts acquired resistance to two generations of immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide) in combination with dexamethasone, that was reversible after a wash-out period. Furthermore, lenalidomide-dexamethasone (LD) or pomalidomide-dexamethasone (PD) did not display cross-resistance, which could be due to the differential requirements of the key target Cereblon and its substrates Aiolos and Ikaros observed in cells resistant to each combination. Differential gene expression profiles of LD and PD could also explain the absence of cross-resistance. Onset of resistance to both combinations was accompanied by upregulation of the mitogen-activated protein kinaseextracellular signal-regulated kinase (ERK) kinase (MEK)ERK pathway and addition of selumetinib, a small-molecule MEK inhibitor, could resensitize resistant cells. Our results provide insights into the mechanisms of acquired resistance to LD and PD combinations and offer possible therapeutic approaches to addressing IMiD resistance in the clinic.Peer Reviewe

    Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry

    Get PDF
    Spanish Myeloma Group (GEM) and Grupo Castellano-Leones de Gammapatias Monoclonales, cooperative study groups: et al.Multiple myeloma remains largely incurable. However, a few patients experience more than 10 years of relapsefree survival and can be considered as operationally cured. Interestingly, long-term disease control in multiple myeloma is not restricted to patients with a complete response, since some patients revert to having a profile of monoclonal gammopathy of undetermined significance. We compared the distribution of multiple compartments of lymphocytes and dendritic cells in the bone marrow and peripheral blood of multiple myeloma patients with long-term disease control (n=28), patients with newly diagnosed monoclonal gammopathy of undetermined significance (n=23), patients with symptomatic multiple myeloma (n=23), and age-matched healthy adults (n=10). Similarly to the patients with monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma, patients with long-term disease control showed an expansion of cytotoxic CD8 + T cells and natural killer cells. However, the numbers of bone marrow T-regulatory cells were lower in patients with long-term disease control than in those with symptomatic multiple myeloma. It is noteworthy that B cells were depleted in patients with monoclonal gammopathy of undetermined significance and in those with symptomatic multiple myeloma, but recovered in both the bone marrow and peripheral blood of patients with long-term disease control, due to an increase in normal bone marrow B-cell precursors and plasma cells, as well as pre-germinal center peripheral blood B cells. The number of bone marrow dendritic cells and tissue macrophages differed significantly between patients with long-term disease control and those with symptomatic multiple myeloma, with a trend to cell count recovering in the former group of patients towards levels similar to those found in healthy adults. In summary, our results indicate that multiple myeloma patients with long-term disease control have a constellation of unique immune changes favoring both immune cytotoxicity and recovery of B-cell production and homing, suggesting improved immune surveillance.This work was supported by the Cooperative Research Thematic Network (RTICCs; RD06/0020/0006 and G03/136), Instituto de Salud Carlos III/ Subdirección General de Investigación Sanitaria (FIS: PI060339; 06/1354; 02/0905; 01/0089/01-02; PS09/01897/01370) and Consejeria de Educacion (GR37) and Consejería de Sanidad, Junta de Castilla y León, Valladolid, Spain (557/A/10). The authors also thank the Fundación Carolina-BBVA for supporting and promoting the exchange of medical researchers from Latin America to Spain.Peer Reviewe
    corecore