445 research outputs found

    Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival

    Get PDF
    Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg

    B-Cell and Monocyte Contribution to Systemic Lupus Erythematosus Identified by Cell-Type-Specific Differential Expression Analysis in RNA-Seq Data

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by complex interplay among immune cell types. SLE activity is experimentally assessed by several blood tests, including gene expression profiling of heterogeneous populations of cells in peripheral blood. To better understand the contribution of different cell types in SLE pathogenesis, we applied the two methods in cell-type-specific differential expression analysis, csSAM and DSection, to identify cell-type-specific gene expression differences in heterogeneous gene expression measures obtained using RNA-seq technology. We identified B-cell-, monocyte-, and neutrophil-specific gene expression differences. Immunoglobulin-coding gene expression was altered in B-cells, while a ribosomal signature was prominent in monocytes. On the contrary, genes differentially expressed in the heterogeneous mixture of cells did not show any functional enrichment. Our results identify antigen binding and structural constituents of ribosomes as functions altered by B-cell- and monocyte-specific gene expression differences, respectively. Finally, these results position both csSAM and DSection methods as viable techniques for celltype-specific differential expression analysis, which may help uncover pathogenic, cell-type-specific processes in SLE

    Internal standard-based analysis of microarray data2—Analysis of functional associations between HVE-genes

    Get PDF
    In this work we apply the Internal Standard-based analytical approach that we described in an earlier communication and here we demonstrate experimental results on functional associations among the hypervariably-expressed genes (HVE-genes). Our working assumption was that those genetic components, which initiate the disease, involve HVE-genes for which the level of expression is undistinguishable among healthy individuals and individuals with pathology. We show that analysis of the functional associations of the HVE-genes is indeed suitable to revealing disease-specific differences. We show also that another possible exploit of HVE-genes for characterization of pathological alterations is by using multivariate classification methods. This in turn offers important clues on naturally occurring dynamic processes in the organism and is further used for dynamic discrimination of groups of compared samples. We conclude that our approach can uncover principally new collective differences that cannot be discerned by individual gene analysi

    Identification of Unique MicroRNA Signature Associated with Lupus Nephritis

    Get PDF
    MicroRNAs (miRNA) have emerged as an important new class of modulators of gene expression. In this study we investigated miRNA that are differentially expressed in lupus nephritis. Microarray technology was used to investigate differentially expressed miRNA in peripheral blood mononuclear cells (PBMCs) and Epstein-Barr Virus (EBV)-transformed cell lines obtained from lupus nephritis affected patients and unaffected controls. TaqMan-based stem-loop real-time polymerase chain reaction was used for validation. Microarray analysis of miRNA expressed in both African American (AA) and European American (EA) derived lupus nephritis samples revealed 29 and 50 differentially expressed miRNA, respectively, of 850 tested. There were 18 miRNA that were differentially expressed in both racial groups. When samples from both racial groups and different specimen types were considered, there were 5 primary miRNA that were differentially expressed. We have identified 5 miRNA; hsa-miR-371-5P, hsa-miR-423-5P, hsa-miR-638, hsa-miR-1224-3P and hsa-miR-663 that were differentially expressed in lupus nephritis across different racial groups and all specimen types tested. Hsa-miR-371-5P, hsa-miR-1224-3P and hsa-miR-423-5P, are reported here for the first time to be associated with lupus nephritis. Our work establishes EBV-transformed B cell lines as a useful model for the discovery of miRNA as biomarkers for SLE. Based on these findings, we postulate that these differentially expressed miRNA may be potential novel biomarkers for SLE as well as help elucidate pathogenic mechanisms of lupus nephritis. The investigation of miRNA profiles in SLE may lead to the discovery and development of novel methods to diagnosis, treat and prevent SLE

    Effects of IRF5 Lupus Risk Haplotype on Pathways Predicted to Influence B Cell Functions

    Get PDF
    Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway, and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways involved in SLE

    Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes

    Get PDF
    Epstein Barr virus (EBV) is a gamma herpes virus associated with certain malignancies and autoimmune diseases. EBV maintains latency in B cells with occasional reactivation, in part by overcoming the host immune response with viral homologs of several human proteins. EBV interleukin 10 (vIL-10), a lytic phase protein, is a homolog of human IL-10 (hIL-10). The effect of vIL-10 on human monocytes, which are one of the first immune cells to respond to infection, is not known. To understand the role of vIL-10, monocytes from peripheral blood mononuclear cells were stimulated with hIL-10 or vIL-10. Human IL-10 stimulated STAT3 phosphorylation, which is required for suppression of inflammatory responses. However, vIL-10 induced significantly lower phosphorylation of STAT3 compared to hIL-10, and was less efficient in downregulating inflammatory genes. vIL-10 significantly reduced the expression of scavenger receptor CD163 on monocytes, suggesting inhibition of M2 polarization. Furthermore, uptake of apoptotic cells was reduced in vIL-10-stimulated monocytes compared to hIL-10-stimulated monocytes. A neutralizing antibody to IL-10R1 inhibited STAT3 phosphorylation induced by either hIL-10 or vIL-10, suggesting that vIL-10 signals through IL-10R1. Interestingly, vIL-10 suppressed hIL-10-induced STAT3 phosphorylation and inhibited upregulation of suppressors of inflammatory response by hIL-10. We further show that vIL-10 levels were significantly higher in plasma samples from systemic lupus erythematosus (SLE) patients compared to matched unaffected controls. vIL-10 levels did not correlate with hIL-10 levels, but were associated with levels of IgA antibodies to EBV viral capsid antigen, which is an indirect measure of viral reactivation. We propose that the suppression of hIL-10- induced anti-inflammatory genes by vIL-10, together with an increase in inflammatory gene expression, may overcome the anti-inflammatory effects of hIL-10 and exacerbate autoimmune responses in systemic autoimmune diseases

    Measuring the value of placements to employers: A cost-benefit approach

    Get PDF
    This article explores the concept and measurement of placement value, underexplored in theory and practice to date. The article makes a theoretical contribution to the placement value discourse by examining and articulating the placement value concept. It also offers a practical contribution by exploring a piloted tool to evaluate employer placement value, developed as part of a project funded by the Higher Education Funding Council for England. It examines the immaturity of the placement value concept against contemporary value discourse, including service- and goods-dominant logic frameworks (exploring value-in-use and value-in-exchange) and calls for greater attention to be paid to placement value to support the sustainable provision of placements.N/
    corecore