10 research outputs found

    The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress.

    Get PDF
    Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp"s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain. Keywords: Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysome

    The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress.

    No full text
    Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp"s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain. Keywords: Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysome

    Sub1/PC4, a multifaceted factor: from transcription to genome stability

    No full text
    Yeast Sub1 and human PC4, two DNA-binding proteins, were originally identified as transcriptional coactivators with a role during transcription preinitiation/initiation. Indeed, Sub1 is a PIC component, and both PC4 and Sub1 also influence the initiation-elongation transition. Moreover, in the specific case of Sub1, it has been clearly reported that it influences processes downstream during mRNA biogenesis, such as transcription elongation, splicing and termination, and even RNAPII phosphorylation/dephosphorylation. Although Sub1 mechanism of action has been mostly unknown up to date, thanks to the recent finding that Sub1 directly interacts with the RNAPII stalk domain, we can envision how it can modulate so many processes. In addition, Sub1 and PC4 participate in RNAPIII transcription as well, and much additional evidence indicates an evolutionarily conserved role for Sub1 and PC4 in the maintenance of genome stability. In this regard, the most novel function of Sub1 and PC4 has been related to the ability of these proteins to bind G-quadruplex DNA structures that may arise as a consequence of the transcription process.OC. acknowledges the Spanish Ministry of Economy and Competitiveness [MINECO; (BFU2013-48374-P)] for funding.Peer Reviewe

    Patients awaiting surgery for neurosurgical diseases during the first wave of the COVID-19 pandemic in Spain: a multicentre cohort study.

    No full text
    The large number of infected patients requiring mechanical ventilation has led to the postponement of scheduled neurosurgical procedures during the first wave of the COVID-19 pandemic. The aims of this study were to investigate the factors that influence the decision to postpone scheduled neurosurgical procedures and to evaluate the effect of the restriction in scheduled surgery adopted to deal with the first outbreak of the COVID-19 pandemic in Spain on the outcome of patients awaiting surgery. This was an observational retrospective study. A tertiary-level multicentre study of neurosurgery activity between 1 March and 30 June 2020. A total of 680 patients awaiting any scheduled neurosurgical procedure were enrolled. 470 patients (69.1%) were awaiting surgery because of spine degenerative disease, 86 patients (12.6%) due to functional disorders, 58 patients (8.5%) due to brain or spine tumours, 25 patients (3.7%) due to cerebrospinal fluid (CSF) disorders and 17 patients (2.5%) due to cerebrovascular disease. The primary outcome was mortality due to any reason and any deterioration of the specific neurosurgical condition. Second, we analysed the rate of confirmed SARS-CoV-2 infection. More than one-quarter of patients experienced clinical or radiological deterioration. The rate of worsening was higher among patients with functional (39.5%) or CSF disorders (40%). Two patients died (0.4%) during the waiting period, both because of a concurrent disease. We performed a multivariate logistic regression analysis to determine independent covariates associated with maintaining the surgical indication. We found that community SARS-CoV-2 incidence (OR=1.011, p Patients awaiting neurosurgery experienced significant collateral damage even when they were considered for scheduled procedures

    Sub1/PC4, a multifaceted factor: from transcription to genome stability

    No full text

    Extrapineal melatonin: sources, regulation, and potential functions

    No full text
    corecore