18 research outputs found

    Izloženost alergenima plijesni u unutarnjem okolišu

    Get PDF
    Humid indoor environments may be colonised by allergenic fi lamentous microfungi (moulds), Aspergillus spp., Penicillium spp., Cladosporium spp., and Alternaria spp. in particular. Mould-induced respiratory diseases are a worldwide problem. In the last two decades, mould allergens and glucans have been used as markers of indoor exposure to moulds. Recently, mould allergens Alt a 1 (Alternaria alternata) and Asp f 1 (Aspergillus fumigatus) have been analysed in various environments (residential and occupational) with enzyme-linked immunosorbent assays, which use monoclonal or polyclonal antibodies. Household Alt a 1 and Asp f 1 levels were usually under the limit of the method detection. By contrast, higher levels of mould allergens were found in environments with high levels of bioaerosols such as poultry farms and sawmills. Data on allergen Alt a 1 and Asp f 1 levels in agricultural settings may provide information on possible colonisation of respective moulds and point out to mould-related diseases in occupants.Vlažni, unutarnji prostori mogu biti kolonizirani alergogenim, filamentoznim mikrogljivicama (plijesni) uglavnom rodova Aspergillus, Penicillium, Cladosporium i Alternaria. Respiratorne bolesti uzrokovane plijesnima zdravstveni su problem diljem svijeta. U posljednja dva desetljeća, neki sastavni dijelovi plijesni kao alergeni i glukan rabe se kao pokazatelji izloženosti plijesni u unutarnjem okolišu. Nedavno su alergeni plijesni Alt a 1 (Alternaria alternata) i Asp f 1 (Aspergillus fumigatus) određivani u različitom okolišu (kućnom i profesionalnom) enzim-imunokemijskom metodom koja rabi monoklonska ili poliklonska antitijela. Razina Alt a 1 i Asp f 1 u kućnoj prašini ispod je granice detekcije. Nasuprot tomu, alergeni plijesni su određeni u okolišu s visokom razinom bioaerosola kao peradarnici i pilane. Razine alergena Alt a 1 i Asp f 1 u nekim poljoprivrednim objektima pružaju informaciju o mogućoj kolonizaciji plijesnima, što upućuje na moguće zdravstvene učinke kod zaposlenika

    Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    No full text
    This study investigated the development of biological soil crust (biocrust) covers in an early successional subtropical forest ecosystem and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in Southeast China (BEF China), sediment discharge and runoff measurements were conducted with micro-scale runoff plots under natural rainfall and biocrust covers were surveyed over a five-year period. Results showed that biocrusts occurred widely in our experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts in only three years. Biocrust covers were still increasing after six years of tree growth. Within later stage crusts, 25 bryophyte species were determined. The development of biocrusts was significantly influenced by the surrounding vegetation cover and terrain attributes. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Our measurements showed, that bryophyte-dominated biocrusts were importantly decreasing soil erosion and more effective in erosion reduction than abiotic soil surface covers. Hence, their significant role to mitigate sediment discharge and runoff generation in mesic forest environments and their ability to quickly colonize gaps in higher vegetation layers are of particular interest for soil erosion control in early stage forest plantations. A detailed record of different biocrust species and their functional influence on soil erosion processes as well as a thorough monitoring of biocrust covers under closing tree canopy in subtropical forests is required in further studies

    Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    No full text
    This study investigated the development of bio- logical soil crusts (biocrusts) in an early successional sub- tropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment deliv- ery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the ex- perimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes signif- icantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope ori- entations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte- dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of par- ticular interest for soil erosion control in early-stage forest plantations

    Toward a methodical framework for comprehensively assessing forest multifunctionality

    No full text
    Biodiversity–ecosystem functioning (BEF) research has extended its scope from communities that are short‐lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger‐scale and longer‐time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long‐lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above‐ and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized
    corecore