28 research outputs found

    Nonlinear photonics properties of porphyrins nanocomposites and self-assembled porphyrins

    Get PDF
    Two major reasons limit porphyrins photonic applications: (i) the difficulty of handling them in liquid solutions and (ii) their degradation with long exposure to light. This necessitates the use of appropriate solid matrices to host the porphyrin compounds such as Nafion (117), a stable and inert ion exchange polymer. The first part of this publication confirms such a possibility. In addition to their effective NLO properties, an enhancement of the Soret and Q-bands absorbance width have been observed by blending three different porphyrin molecules in the Nafion column matrix membrane. This is an important development towards achieving efficient photon-harvesting medium for possible application in photonic devices. The second part of this contribution reports on the self-assembly/molecular recognition of a specific class of porphyrins giving rise to tubular nano-systems with potential THG nonlinear properties

    Surface Segregation of Cyclic Chains in Binary Melts of Thin Polymer Films: The Influence of Constituent Concentration

    No full text
    We carry out extensive molecular dynamics simulations of thin films of bead-spring models of binary mixtures composed of cyclic and linear polymer chains. We study the equilibrium behavior of the polymer chains for two very different chain lengths, which resemble short (10-mers) and long (100-mers) chains, at different concentrations of the binary mixture. We clearly show how the concentration variable affects the enrichment of either of the two polymer species at the interface, and also how the chain length influences this process

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Get PDF
    The luminescence and electroluminescence of an ethyne-linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs
    corecore