100 research outputs found
Determination of Sex Using Hand Dimensions
Background: Whenever unknown or mutilated dead bodiesor dismembered body parts are found, crime investigative agencies focuses on establishment of identity of deceased in their primary investigation. Determination of sex from dismembered body parts can play vital role for identification of deceased. Present study can be helpful in such cases to determine sex from Hand dimensions, if isolated hand is found. Present study was done with the aim to derive cut off points for Hand length, breadth and Hand index to differentiate male and female.Methods: Value more than cut off point denotes male and less than that denotes female. Total 100 male and 100 female cases were randomly selected from cadavers brought for post-mortem examination at mortuary of P.D.U. Govt. Medical College and Hospital, Rajkot. Hand length and breadth was measured by sliding caliperup to nearest 0.1 cm after breaking Rigor mortis, if developed. Collected data were statistically analysed using software like Epi info 7 and Microsoft excel 2007.Results: No significant bilateral difference was found in Hand length (P>0.05) but Hand breadth was showing significant bilateral difference (P<0.05). However, bilateral difference in Hand breadth was relatively small (0.17 cm for males and 0.15 cm for females, on an average). So, combined right and left hand measurements were used to derive cut off points. Cut off point to differentiate male and female for Hand length, breadth and index were 17.2, 7.7 and 44.6 respectively.Conclusion: Hand length, breadth and Hand index are showing sexual dimorphism and therefore they can be used for determination of sex when isolated hand is found. Hand breadth was showing highest accuracy in determination of sex, followed by Hand length and Hand index
Studies on synthesis and Reduction of Graphene Oxide from Natural Graphite by using Chemical Method
Graphene is a material with rapidly growing interest. It consists of flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice and is basic building block for all graphitic materials. Interest in Graphene is because of its excellent mechanical, electrical, thermal, optical properties and its very high specific surface area. Studies have been performed on wet oxidation of natural graphite by using Modified Hummers Method followed by exfoliation and reduction in order toВ synthesise graphene from Graphite Oxide (GO). Acid route has been followed for oxidation whereas reduction has been carried out in water with hydrazine hydrate and Sodium Borohydrate. It results in to a material with characteristics that are comparable to those of pristine graphite. The reaction at every step has been characterized by using FTIR, TGA, XRD, Raman spectroscopy and surface area measurement
A monoclinic polymorph of 4-(2H-1,3-benzodioxol-5-yl)-1-(4-methylphenyl)-1H-pyrazol-5-amine
The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z′ = 1) of the previously reported triclinic (P-1 with Z′ = 2) form [Gajera et al. (2013). Acta Cryst. E69, o736–o737]. The molecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the molecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methylene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent molecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, molecules assemble into supramolecular helical chains via amino–pyrazolyl N—H...N hydrogen bonds. These are linked into layers via C—H...π interactions, and layers stack along the a axis with no specific interactions between them
Simultaneous detection of thirteen exons of dystrophin gene by optimized multiplex PCR assay to screen Duchenne/Becker muscular dystrophy
Advancements in Polymerase Chain Reaction (PCR) technology and other techniques like Deoxyribonucleic acid (DNA)signal and target amplification have become key procedures in molecular diagnostics. PCR enables the synthesis of nucleic acids in vitro through which a DNA segment can be specifically replicated in a semiconservative way that sets forth deletion and mutation analysis. Multiplex PCR (M-PCR) is beneficial over standard and long PCR as this can amplify more than one locus using the respective primer sets. In harmony with this, the present study aimed to optimize M-PCR followed by its chemistry and condition to screen Duchenne Muscular Dystrophy (DMD) [OMIM #310200] and Becker Muscular Dystrophy (BMD) [OMIM #300376]. Muscular Dystrophies (MDs) are a broad group of hereditary, progressive, and degenerative disorders of muscles. X-linked recessive D/BMD are caused by mutation/s in the dystrophin gene [OMIM #300377] that encodes for dystrophin protein [UniProt#P11532]. As dystrophin is the human metagene with 79 exons, mutational analysis is very challenging. Chamberlain set (10 plex), Beggs set (9 Plex), and Kunkel set (7 Plex) is used for many years to diagnose this condition. However, in this study, Beggs set is customized with 13 exons to screen DMD gene mutation in a single reaction. Optimization of M-PCR was designed with many physicochemical parameters. According to the literature and after many appraisals the present study demonstrated the most sufficient concentration of various chemical components and optimal cycling conditions to optimize the modified Beggs set (13 Plex). 50 µL PCR reaction includes primer(s) (0.3–0.5 µM each), dNTP mixture (160 µM each), Dream Taq buffer (1X), Taq DNA polymerase (6U/50 µL), DNA template (250 ng/50 µL), BSA (0.4 µg/µL), and MgCl2 (1.4 mM). To get the most effective results cyclic conditions obtained were 10 min initial denaturation at 94°C, 62°C annealing temperature, and 35 PCR cycles at 72°C extending temperature. Consequently, the study successfully formulated a less expensive and simple approach for >3000 bp that was used to screen D/BMD. Finally, a developed M-PCR mix with a unique combination of specificity and sensitivity coupled with great flexibility has led to a true revolution in molecular diagnostics
Changes in expression of polyamines and ethylene biosynthesis genes in groundnut (Arachis hypogaea L.) genotypes during Sclerotium rolfsii infection
Stem rot disease caused by fungal pathogen, Sclerotium rolfsii Sacc., is potential threat to groundnut production in warm and humid condition. After host-pathogen interaction, a multitude of plant resistance associated reactions are initiated. In the present investigation we studied the role of polyamines and ethylene during host-pathogen interaction in stem rot tolerant (CS319, GG17 and GG31) and susceptible (TG37A) groundnut genotypes at 24, 48 and 72 h after infection. Stem rot tolerant genotypes showed higher expression of polyamine biosynthesis genes ornithine decarboxylase (Ordec), spermine synthase (Sms) and lipoxygenase1 (LOX1) gene at 72 h after infection than that of susceptible genotype TG37A. The expression analysis of ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate oxidase: ACCO and (ACCS) showed up regulation in stem rot susceptible genotype TG37A than that of tolerant genotypes after infection at all stages (24, 48 and 72 h after infection). The expression of amine oxidase (AMO) gene was observed highest in stem rot susceptible genotype TG37A while minimum in GJG31. Expression of this gene was remarkably induced in TG37A which may leads to higher accumulation of H2O2. Higher content of a polyamine, putrescine was found in the leaves of stem rot tolerant genotypes at 48 and 72 h after infection. These results implied that tolerant genotypes induced higher polyamine biosynthesis which may involve in plant defense and impart tolerance/ resistance. While, susceptible genotype (TG37A), utilized higher flux of S-Adenosyl methionine (SAM) for ethylene biosynthesis which may leads to necrosis of plants. Thus, stem rot resistant genotypes may be developed through genetic manipulation of polyamine biosynthesis pathway
Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma
The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease
Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu
CaRotid Artery Filtering Technique (CRAFT): A Technique for Carotid Artery Stenting with Intrinsic Embolic Protection.
PURPOSE: Carotid artery stenting (CAS) is an established treatment for symptomatic carotid artery stenosis as an alternative to carotid endarterectomy. A variety of techniques and devices have been devised to minimise periprocedural stroke risk using either proximal or distal embolic protection. This study presents a method of embolic protection during CAS-the CaRotid Artery Filtering Technique (CRAFT). MATERIALS AND METHODS: The CRAFT technique employs aspects of both proximal and distal embolic protection. The CASPER RX stent (MicroVention, Tustin, CA, USA), which is a double-layered, closed-cell, micromesh nitinol stent, is deployed across the carotid artery stenosis with the assistance of a FlowGate balloon guide catheter (Stryker Neurovascular, Fremont, CA, USA). The partially deployed stent acts as a distal filter while the balloon guide is deflated midway during stent deployment to prevent distal plaque embolisation, followed by completion of stent deployment and angioplasty. RESULTS: A total of 94 patients underwent CAS using the CRAFT technique between June 2016 and March 2021. Successful stent deployment was achieved in all patients. Preliminary results demonstrated acute stent occlusion in 6 patients (6.4%) and distal embolic stroke in 5 patients (5.3%). The median procedural fluoroscopy time was 34 minutes with an interquartile range of 22 to 55 minutes. CONCLUSION: The CRAFT technique of CAS presented by this study can be applied in the treatment of symptomatic carotid artery stenosis in both emergency and elective procedure settings with a high technical success and low distal embolic stroke risk
- …