210 research outputs found

    An explanation for the dark region in the western melt zone of the Greenland ice sheet

    Get PDF
    The western part of the Greenland ice sheet contains a region that is darker than the surrounding ice. This feature has been analysed with the help of MODIS images. The dark region appears every year during the summer season and can always be found at the same location, which makes meltwater unlikely as the only source for the low albedos. Spectral information indicates that the ice in this region contains more debris than the ice closer to the margin. ASTER images reveal a wavy pattern in the darker ice. Based on these findings we conclude that ice, containing dust from older periods, is presently outcropping near the margin, leading to albedos lower than observed for the remaining ablation area. Therefore it can be concluded that the accumulation of meltwater is a result rather than a cause of the darkening

    The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli

    Get PDF
    In Escherichia coli many enzymes including MurG are directly involved in the synthesis and assembly of peptidoglycan. MurG is an essential glycosyltransferase catalysing the last intracellular step of peptidoglycan synthesis. To elucidate its role during elongation and division events, localization of MurG using immunofluorescence microscopy was performed. MurG exhibited a random distribution in the cell envelope with a relatively higher intensity at the division site. This mid-cell localization was dependent on the presence of a mature divisome. Its localization in the lateral cell wall appeared to require the presence of MreCD. This could be indicative of a potential interaction between MurG and other proteins. Investigating this by immunoprecipitation revealed the association of MurG with MreB and MraY in the same protein complex. In view of this, the loss of rod shape of ΔmreBCD strain could be ascribed to the loss of MurG membrane localization. Consequently, this could prevent the localized supply of the lipid II precursor to the peptidoglycan synthesizing machinery involved in cell elongation. It is postulated that the involvement of MurG in the peptidoglycan synthesis concurs with two complexes, one implicated in cell elongation and the other in division. A model representing the first complex is proposed

    Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Get PDF
    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle

    Intravesical Treatments of Bladder Cancer: Review

    Get PDF
    For bladder cancer, intravesical chemo/immunotherapy is widely used as adjuvant therapies after surgical transurethal resection, while systemic therapy is typically reserved for higher stage, muscle-invading, or metastatic diseases. The goal of intravesical therapy is to eradicate existing or residual tumors through direct cytoablation or immunostimulation. The unique properties of the urinary bladder render it a fertile ground for evaluating additional novel experimental approaches to regional therapy, including iontophoresis/electrophoresis, local hyperthermia, co-administration of permeation enhancers, bioadhesive carriers, magnetic-targeted particles and gene therapy. Furthermore, due to its unique anatomical properties, the drug concentration-time profiles in various layers of bladder tissues during and after intravesical therapy can be described by mathematical models comprised of drug disposition and transport kinetic parameters. The drug delivery data, in turn, can be combined with the effective drug exposure to infer treatment efficacy and thereby assists the selection of optimal regimens. To our knowledge, intravesical therapy of bladder cancer represents the first example where computational pharmacological approach was used to design, and successfully predicted the outcome of, a randomized phase III trial (using mitomycin C). This review summarizes the pharmacological principles and the current status of intravesical therapy, and the application of computation to optimize the drug delivery to target sites and the treatment efficacy

    Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels

    Get PDF
    International audienceBackground Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored.MethodsThis simulation study investigated how much predictive ability is gained by using WGS data under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, with emphasis on divergent dairy cattle breeds with small populations. The relative performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection method with a mixture of two normal distributions (MixP) were also evaluated. Genomic predictions were based on within-population, across-population, and multi-breed reference populations.ResultsThe use of WGS data for within-population predictions resulted in small to large increases in accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL densities, and time of divergence between populations) with a combined reference population and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL density increased to 132 QTL/Morgan.ConclusionsOur results show that, genomic predictions in numerically small cattle populations would benefit from a combination of WGS data, a multi-breed reference population, and a variable selection method

    Variations of algal communities cause darkening of a Greenland glacier

    Get PDF
    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes

    Second-generation colon capsule endoscopy compared with colonoscopy

    Get PDF
    Colon capsule endoscopy (CCE) represents a noninvasive technology that allows visualization of the colon without requiring sedation and air insufflation. A second-generation colon capsule endoscopy system (PillCam Colon 2) (CCE-2) was developed to increase sensitivity for colorectal polyp detection compared with the first-generation system. OBJECTIVE: To assess the feasibility, accuracy, and safety of CCE-2 in a head-to-head comparison with colonoscopy. DESIGN AND SETTING: Prospective, multicenter trial including 8 European sites. PATIENTS: This study involved 117 patients (mean age 60 years). Data from 109 patients were analyzed. INTERVENTION: CCE-2 was prospectively compared with conventional colonoscopy as the criterion standard for the detection of colorectal polyps that are >/=6 mm or masses in a cohort of patients at average or increased risk of colorectal neoplasia. Colonoscopy was independently performed within 10 hours after capsule ingestion or on the next day. MAIN OUTCOME MEASUREMENTS: CCE-2 sensitivity and specificity for detecting patients with polyps >/=6 mm and >/=10 mm were assessed. Capsule-positive but colonoscopy-negative cases were counted as false positive. Capsule excretion rate, level of bowel preparation, and rate of adverse events also were assessed. RESULTS: Per-patient CCE-2 sensitivity for polyps >/=6 mm and >/=10 mm was 84% and 88%, with specificities of 64% and 95%, respectively. All 3 invasive carcinomas were detected by CCE-2. The capsule excretion rate was 88% within 10 hours. Overall colon cleanliness for CCE-2 was adequate in 81% of patients. LIMITATIONS: Not unblinding the CCE-2 results at colonoscopy; heterogenous patient population; nonconsecutive patients. CONCLUSION: In this European, multicenter study, CCE-2 appeared to have a high sensitivity for the detection of clinically relevant polypoid lesions, and it might be considered an adequate tool for colorectal imaging

    Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes.

    Get PDF
    Robust production of reactive oxygen species (ROS) by phagocyte NADPH oxidase (phox) during the respiratory burst (RB) is a characteristic feature of eosinophil and neutrophil granulocytes. In these cells the voltage-gated proton channel (Hv1) is now considered as an ancillary subunit of the phox needed for intense ROS production. Multiple sources reported that the expression of phox subunits and RB is more intensive in eosinophils than in neutrophils. In most of these studies the eosinophils were not isolated from healthy individuals, and a comparative analysis of Hv1 expression had never been carried out. We performed a systematic comparison of the levels of essential phox subunits, Hv1 expression and ROS producing capacity between eosinophils and neutrophils of healthy individuals. The expression of phox components was similar, whereas the amount of Hv1 was approximately 10-fold greater in eosinophils. Furthermore, Hv1 expression correlated with Nox2 expression only in eosinophils. Additionally, in confocal microscopy experiments co-accumulation of Hv1 and Nox2 at the cell periphery was observed in resting eosinophils but not in neutrophils. While phorbol-12-myristate-13-acetate-induced peak extracellular ROS release was approximately 1.7-fold greater in eosinophils, oxygen consumption studies indicated that the maximal intensity of the RB is only approximately 1.4-fold greater in eosinophils. Our data reinforce that eosinophils, unlike neutrophils, generate ROS predominantly extracellularly. In contrast to previous works we have found that the two granulocyte types display very similar phox subunit expression and RB capacity. The large difference in Hv1 expression suggests that its support to intense ROS production is more important at the cell surface
    corecore