9,114 research outputs found
Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution
Textures in images can often be well modeled using self-similar processes
while they may at the same time display anisotropy. The present contribution
thus aims at studying jointly selfsimilarity and anisotropy by focusing on a
specific classical class of Gaussian anisotropic selfsimilar processes. It will
first be shown that accurate joint estimates of the anisotropy and
selfsimilarity parameters are performed by replacing the standard 2D-discrete
wavelet transform by the hyperbolic wavelet transform, which permits the use of
different dilation factors along the horizontal and vertical axis. Defining
anisotropy requires a reference direction that needs not a priori match the
horizontal and vertical axes according to which the images are digitized, this
discrepancy defines a rotation angle. Second, we show that this rotation angle
can be jointly estimated. Third, a non parametric bootstrap based procedure is
described, that provides confidence interval in addition to the estimates
themselves and enables to construct an isotropy test procedure, that can be
applied to a single texture image. Fourth, the robustness and versatility of
the proposed analysis is illustrated by being applied to a large variety of
different isotropic and anisotropic self-similar fields. As an illustration, we
show that a true anisotropy built-in self-similarity can be disentangled from
an isotropic self-similarity to which an anisotropic trend has been
superimposed
The Wide-field High-resolution Infrared TElescope (WHITE)
The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated
in the first years of its life to carrying out a few (well focused in terms of
science objectives and time) legacy surveys.
WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq.
deg. in the wavelength range 1 - 5 um, which means that we will very
efficiently use all the available observational time during night time and day
time. Moreover, the deepest observations will be performed by summing up
shorter individual frames. We will have a temporal information that can be used
to study variable objects.
The three key science objectives of WHITE are : 1) A complete survey of the
Magellanic Clouds to make a complete census of young stellar objects in the
clouds and in the bridge and to study their star formation history and the link
with the Milky Way. The interaction of the two clouds with our Galaxy might the
closest example of a minor merging event that could be the main driver of
galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of
dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the
equation of state from these obscured objects, study the formation of dust in
galaxies and build the first high resolution sample of high redshift galaxies
observed in their optical frame 3) A very wide weak lensing survey over that
would allow to estimate the equation of state in a way that would favourably
compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science
Cases at Dome C" Potsdam 17-21 September, 200
Dynamic glass transition: bridging the gap between mode-coupling theory and the replica approach
We clarify the relation between the ergodicity breaking transition predicted
by mode-coupling theory and the so-called dynamic transition predicted by the
static replica approach. Following Franz and Parisi [Phys. Rev. Lett. 79, 2486
(1997)], we consider a system of particles in a metastable state characterized
by non-trivial correlations with a quenched configuration. We show that the
assumption that in a metastable state particle currents vanish leads to an
expression for the replica off-diagonal direct correlation function in terms of
a replica off-diagonal static four-point correlation function. A factorization
approximation for this function results in an approximate closure for the
replica off-diagonal direct correlation function. The replica off-diagonal
Ornstein-Zernicke equation combined with this closure coincides with the
equation for the non-ergodicity parameter derived using the mode-coupling
theory.Comment: revised version; to be published in EP
Stability of Monitoring Weak Changes in Multiply Scattering Media with Ambient Noise Correlation: Laboratory Experiments
Previous studies have shown that small changes can be monitored in a
scattering medium by observing phase shifts in the coda. Passive monitoring of
weak changes through ambient noise correlation has already been applied to
seismology, acoustics and engineering. Usually, this is done under the
assumption that a properly reconstructed Green function as well as stable
background noise sources are necessary. In order to further develop this
monitoring technique, a laboratory experiment was performed in the 2.5MHz range
in a gel with scattering inclusions, comparing an active (pulse-echo) form of
monitoring to a passive (correlation) one. Present results show that
temperature changes in the medium can be observed even if the Green function
(GF) of the medium is not reconstructed. Moreover, this article establishes
that the GF reconstruction in the correlations is not a necessary condition:
the only condition to monitoring with correlation (passive experiment) is the
relative stability of the background noise structure
Realization of a superconducting atom chip
We have trapped rubidium atoms in the magnetic field produced by a
superconducting atom chip operated at liquid Helium temperatures. Up to
atoms are held in a Ioffe-Pritchard trap at a distance of 440
m from the chip surface, with a temperature of 40 K. The trap
lifetime reaches 115 s at low atomic densities. These results open the way to
the exploration of atom--surface interactions and coherent atomic transport in
a superconducting environment, whose properties are radically different from
normal metals at room temperature.Comment: Submitted to Phys. Rev. Let
The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus.
A large number of hypothetical genes potentially encoding small proteins of unknown function are annotated in the Brucella abortus genome. Individual deletion of 30 of these genes identified four mutants, in BAB1_0355, BAB2_0726, BAB2_0470, and BAB2_0450 that were highly attenuated for infection. BAB2_0726, an YbgT-family protein located at the 3' end of the cydAB genes encoding cytochrome bd ubiquinal oxidase, was designated cydX. A B. abortus cydX mutant lacked cytochrome bd oxidase activity, as shown by increased sensitivity to H(2)O(2), decreased acid tolerance and increased resistance to killing by respiratory inhibitors. The C terminus, but not the N terminus, of CydX was located in the periplasm, suggesting that CydX is an integral cytoplasmic membrane protein. Phenotypic analysis of the cydX mutant, therefore, suggested that CydX is required for full function of cytochrome bd oxidase, possibly via regulation of its assembly or activity
Force distribution in a scalar model for non-cohesive granular material
We study a scalar lattice model for inter-grain forces in static,
non-cohesive, granular materials, obtaining two primary results. (i) The
applied stress as a function of overall strain shows a power law dependence
with a nontrivial exponent, which moreover varies with system geometry. (ii)
Probability distributions for forces on individual grains appear Gaussian at
all stages of compression, showing no evidence of exponential tails. With
regard to both results, we identify correlations responsible for deviations
from previously suggested theories.Comment: 16 pages, 9 figures, Submitted to PR
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Strong electron correlations in cobalt valence tautomers
We have examined cobalt based valence tautomer molecules such as
Co(SQ)(phen) using density functional theory (DFT) and variational
configuration interaction (VCI) approaches based upon a model Hamiltonian. Our
DFT results extend earlier work by finding a reduced total energy gap (order
0.6 eV) between high temperature and low temperature states when we fully relax
the coordinates (relative to experimental ones). Futhermore we demonstrate that
the charge transfer picture based upon formal valence arguments succeeds
qualitatively while failing quantitatively due to strong covalency between the
Co 3 orbitals and ligand orbitals. With the VCI approach, we argue that
the high temperature, high spin phase is strongly mixed valent, with about 30 %
admixture of Co(III) into the predominantly Co(II) ground state. We confirm
this mixed valence through a fit to the XANES spectra. Moreover, the strong
electron correlations of the mixed valent phase provide an energy lowering of
about 0.2-0.3 eV of the high temperature phase relative to the low temperature
one. Finally, we use the domain model to account for the extraordinarily large
entropy and enthalpy values associated with the transition.Comment: 10 pages, 4 figures, submitted to J. Chem. Phy
Walls Inhibit Chaotic Mixing
We report on experiments of chaotic mixing in a closed vessel, in which a
highly viscous fluid is stirred by a moving rod. We analyze quantitatively how
the concentration field of a low-diffusivity dye relaxes towards homogeneity,
and we observe a slow algebraic decay of the inhomogeneity, at odds with the
exponential decay predicted by most previous studies. Visual observations
reveal the dominant role of the vessel wall, which strongly influences the
concentration field in the entire domain and causes the anomalous scaling. A
simplified 1D model supports our experimental results. Quantitative analysis of
the concentration pattern leads to scalings for the distributions and the
variance of the concentration field consistent with experimental and numerical
results.Comment: 4 pages, 3 figure
- …