631 research outputs found

    Impact of COVID-19 on maxillofacial surgery practice: a worldwide survey

    Get PDF
    The outbreak of coronavirus disease 2019 (COVID-19) is rapidly changing our habits. To date, April 12, 2020, the virus has reached 209 nations, affecting 1.8 million people and causing more than 110,000 deaths. Maxillofacial surgery represents an example of a specialty that has had to adapt to this outbreak, because of the subspecialties of oncology and traumatology. The aim of this study was to examine the effect of this outbreak on the specialty of maxillofacial surgery and how the current situation is being managed on a worldwide scale. To achieve this goal, the authors developed an anonymous questionnaire which was posted on the internet and also sent to maxillofacial surgeons around the globe using membership lists from various subspecialty associations. The questionnaire asked for information about the COVID-19 situation in the respondent's country and in their workplace, and what changes they were facing in their practices in light of the outbreak. The objective was not only to collect and analyse data, but also to highlight what the specialty is facing and how it is handling the situation, in the hope that this information will be useful as a reference in the future, not only for this specialty, but also for others, should COVID-19 or a similar global threat arise again

    Seismic Analysis of Traditional Stone Rural Buildings: Case study of a one-storey building

    Get PDF
    Specific features of traditional rural buildings can influence the assessment of their seismic behaviour. When a change in intended use of traditional rural buildings is necessary, restoration work must comply with specific seismic norms and should preserve their original features. In this paper, a model for the seismic safety verification of masonry walls for inplane actions was applied to investigate the structural behaviour of one-storey stone-masonry traditional rural buildings, in relation to standards application and possible retrofitting interventions. The results showed that pier-panel collapse mechanisms and the simulation method of masonry spandrel behaviour are of importance and affect the need to provide for strengthening interventions

    Kernel density estimation analyses based on a low power-global positioning system for monitoring environmental issues of grazing cattle

    Get PDF
    The use of wearable sensors that record animal activity in intensive livestock systems has become more and more frequent for both early detection of diseases and improving production quality. Their application may also be significant in extensive livestock systems, with infrequent farmer-to-animal contact. The pre-sent study aimed to prove the feasibility of a novel automatic sys- tem for locating and tracking cows in extensive livestock systems based on space-time data provided by a low-power global positioning system (LP-GPS). The information was used to study the pasture exploitation by the herd for modelling the environmental impacts of extensive livestock systems through geographical information systems (GIS). A customised device, placed within a rectangular PVC case compatible with the collar usually worn by animals, was equipped with an LP-GPS omnidirectional system, an integrated SigFox communication system, and a power supply. The experimental trial was conducted in an existing semi-natural pasture characterised by good pasture allowance and cultivated grazing areas. Ten cows were embedded with LP-GPS collars, and the data, i.e., geographical coordinates and the time intervals related to each cow detection, were recorded every 20 minutes. Data were collected through a specifically developed AppWeb to be further imported and elaborated by using a GIS software tool. In the GIS environment, the daily distances travelled by each cow were linked with heatmaps obtained by applying Kernel density estimation models from the points obtained from the LP-GPS col-lars. The study results made it possible to obtain information on some relevant aspects of livestock’s environmental issues. In detail, it was possible to acquire information on herd behaviour related to the use of the pasture, e.g., the area of the pasture most frequently used during the day, individual use of the pasture, and possible animal interactions. These results represent the first step towards further insights and research activities because monitoring of animal locations could reduce several environmental issues such as soil degradation and greenhouse emissions. r

    Potential biogas production from agricultural by-products in Sicily. A case study of citrus pulp and olive pomace

    Get PDF
    Renewable energy sources represent a suitable alternative to conventional fossil fuels, due to the possible advantages in terms of environmental impact reduction. Anaerobic digestion of biomasses could be considered an environmental friendly way to treat and revalorise large amounts of by-products from farming industries because it ensures both pollution control and energy recovery. Therefore, the objective of this study was to define a methodology for evaluating the potential biogas production available from citrus pulp and olive pomace, which are suitable agricultural by-products for biogas production. In the first phase of the study, the spatial distribution of both olive and citrus-producing areas was analysed in Sicily, a geographical area of the Mediterranean basin highly representative of these types of cultivation. Then, a GIS-based model, which had been previously defined and utilised to evaluate the amount of citrus pulp and olive pomace production, was applied to this case study. Based on the results obtained for the different provinces of Sicily, the province of Catania was chosen as the study area of this work since it showed the highest production of both citrus pulp and olive pomace. Therefore, a further analysis regarded the quantification of olive pomace and citrus pulp at municipal level. The results of this analysis showed that the total amount of available citrus pulp and olive pomace corresponded theoretically to about 11,102,469 Nm3/year biogas. Finally, the methodology adopted in this study made it possible to identify suitable areas for the development of new biogas plants by considering both the spatial distribution of the olive and citrus growing areas and the locations of the existing processing industries

    Improving natural ventilation in renovated free-stall barns for dairy cows: Optimized building solutions by using a validated computational fluid dynamics model

    Get PDF
    Natural ventilation is the most used system to create suitable conditions, removing gases, introducing oxygen in livestock buildings. Its efficiency depends on several factors and above all on the number, the dimensions and the position of wall openings and internal layout of livestock buildings. The aim of this research was to develop optimized layout solutions for improving natural ventilation effectiveness in free-stall barns for dairy cows by using a CFD approach. A validated computational fluid dynamics (CFD) model was applied in a case study which is highly representative of building interventions for renovating the layout of free-stall barns for dairy cows located in an area of the Mediterranean basin. Firstly, dairy cow behaviour was analysed by visual examination of time-lapse video-recordings. Then, simulations were carried out by using the validated CFD model and changing the position of internal and external building elements (i.e., internal office and external buildings for milking) in order to find the best condition for the thermal comfort of the animals. The results showed that the best conditions were recorded for a new configuration of the building in terms of air velocity distribution within the resting area, the service alley and the feeding alley for dairy cows, and in the pens for calves. In this new layout, the office areas and the north-west wall openings were located by mirroring them along the transversal axis of the barn. Therefore, the CFD approach proposed in this study could be used during the design phase, as a decision support system aimed at improving the natural ventilation within the barn

    Development of a CFD model to simulate natural ventilation in a semi-open free-stall barn for dairy cows

    Get PDF
    Natural ventilation is the most common passive cooling system in livestock buildings. The aim of this research is to assess airflow distribution inside a free-stall barn for dairy cows by computational fluid dynamics (CFD) modelling and simulation. The model is validated by using the average values of experimental data acquired in a free-stall barn, which is considered relevant because it is located in a region characterised by hot climate conditions during the summer that could induce animal heat stress. Simulations are carried out in steady-state conditions, and simulated data are validated by the average values of air velocity measurements. Since the modelled air velocity distribution in the barn fits the real one well, the CFD model is considered reliable to simulate other conditions. The application of the proposed CFD model in the simulation of specific building design alternatives could be aimed at studying the related airflow distribution in order to find the best configuration

    Diagnostic and prognostic role of liquid biopsy in non-small cell lung cancer: evaluation of circulating biomarkers

    Get PDF
    Lung cancer is still one of the main causes of cancer-related death, together with prostate and colorectal cancers in males and breast and colorectal cancers in females. The prognosis for non-small cell lung cancer (NSCLC) is strictly dependent on feasibility of a complete surgical resection of the tumor at diagnosis. Since surgery is indicated only in early stages tumors, it is necessary to anticipate the timing of diagnosis in clinical practice. In the diagnostic and therapeutic pathway for NSCLC, sampling of neoplastic tissue is usually obtained using invasive methods that are not free from disadvantages and complications. A valid alternative to the standard biopsy is the liquid biopsy (LB), that is, the analysis of samples from peripheral blood, urine, and other biological fluids, with a simple and non-invasive collection. In particular, it is possible to detect in the blood different tumor derivatives, such as cell-free DNA (cfDNA) with its subtype circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), and circulating tumor cells (CTCs). Plasma-based testing seems to have several advantages over tumor tissue biopsy; firstly, it reduces medical costs, risk of complications related to invasive procedures, and turnaround times; moreover, the analysis of genes alteration, such as EGFR, ALK, ROS1, and BRAF is faster and safer with this method, compared to tissue biopsy. Despite all these advantages, the evidences in literatures indicate that assays performed on liquid biopsies have a low sensitivity, making them unsuitable for screening in lung cancer at the current state. This is caused by lack of standardization in sampling and preparation of specimen and by the low concentration of biomarkers in the bloodstream. Instead, routinely use of LB should be preferred in revaluation of patients with advanced NSCLC resistant to chemotherapy, due to onset of new mutations

    Potentialities of a Low Temperature Solar Heating System Based on Slurry Phase Change Materials (PCS)

    Get PDF
    Flat-plate solar thermal collectors are the most common devices to convert solar energy into heat. Water-based fluids are commonly adopted as heat carrier for this technology, although their efficiency is limited by some thermodynamic and heat storage constraints. To overcome some of these limitations, an innovative approach is the use of latent heat, which can be available by means of microencapsulated slurry PCMs (mixtures of microencapsulated Phase Change Materials, water and surfactants). The viscosity of these fluids is similar to that of water and they can be easily pumped. In the present work, some of the thermo-physical and rheological properties and material behaviour that interest flat-plate solar thermal collectors with slurry PCM as the heat carrier fluid are analysed. Concepts of solar thermal systems filled with a slurry phase change material are proposed and a prototypal system is presented. Possible advantages and drawbacks of this technology are also discussed

    A building characterization-based method for the advancement of knowledge on external architectural features of traditional rural buildings

    Get PDF
    The significant role that traditional rural buildings have with regard to environmental conservation and rural development is widely acknowledged by the scientific community. These buildings must be protected from inappropriate building interventions that may stem from their rather superficial knowledge. Therefore, this study was directed towards overcoming such a limitation by developing a method based on traditional rural buildings' characterization. In particular, the study aimed at the characterization of building materials and techniques used for the construction of a number of building components that make up the external envelope of traditional rural buildings. The application of the method to a homogeneous area of the Etna Regional Park (Italy) highlighted the need to improve the technical norms of the park's Territorial Coordination Plan to respect the building characteristics of the traditional rural buildings located in the protected area

    SUDARE-VOICE variability-selection of Active Galaxies in the Chandra Deep Field South and the SERVS/SWIRE region

    Get PDF
    One of the most peculiar characteristics of Active Galactic Nuclei (AGN) is their variability over all wavelengths. This property has been used in the past to select AGN samples and is foreseen to be one of the detection techniques applied in future multi-epoch surveys, complementing photometric and spectroscopic methods. In this paper, we aim to construct and characterise an AGN sample using a multi-epoch dataset in the r band from the SUDARE-VOICE survey. Our work makes use of the VST monitoring program of an area surrounding the Chandra Deep Field South to select variable sources. We use data spanning a six month period over an area of 2 square degrees, to identify AGN based on their photometric variability. The selected sample includes 175 AGN candidates with magnitude r < 23 mag. We distinguish different classes of variable sources through their lightcurves, as well as X-ray, spectroscopic, SED, optical and IR information overlapping with our survey. We find that 12% of the sample (21/175) is represented by SN. Of the remaining sources, 4% (6/154) are stars, while 66% (102/154) are likely AGNs based on the available diagnostics. We estimate an upper limit to the contamination of the variability selected AGN sample of about 34%, but we point out that restricting the analysis to the sources with available multi-wavelength ancillary information, the purity of our sample is close to 80% (102 AGN out of 128 non-SN sources with multi-wavelength diagnostics). Our work thus confirms the efficiency of the variability selection method in agreement with our previous work on the COSMOS field; in addition we show that the variability approach is roughly consistent with the infrared selection.Comment: Published in A & A, 15 pages, 6 figure
    • …
    corecore