4,072 research outputs found

    Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    Full text link
    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of DD dimensions (D4D\ge 4) the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n0n\ge 0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an \emph{equivalent} (2d+n)×(2d+n)(2 d+n)\times(2 d+n) matrix spectral problem (d=D2d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton and the second rank antisymmetric tensor fields. This new soliton generating procedure is available for constructing of various types of field configurations including stationary axisymmetric fields, interacting plane, cylindrical or some other types of waves and cosmological solutions.Comment: 4 pages; added new section on Belinski-Zakharov solitons and new expressions for calculation of the conformal factor; corrected typo

    Spin Physics at COMPASS

    Full text link
    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off a longitudinally or a transversely polarized deuteron (6LiD) or proton (NH3) target. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavors. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH3 target to study transverse momentum dependent distributions.Comment: Proceedings of the Rutherford conference, Manchester, August 2011. Changes due to referees comments implemente

    Using supernova neutrinos to monitor the collapse, to search for gravity waves and to probe neutrino masses

    Full text link
    We discuss the importance of observing supernova neutrinos. By analyzing the SN1987A observations of Kamiokande-II, IMB and Baksan, we show that they provide a 2.5{\sigma} support to the standard scenario for the explosion. We discuss in this context the use of neutrinos as trigger for the search of the gravity wave impulsive emission. We derive a bound on the neutrino mass using the SN1987A data and argue, using simulated data, that a future galactic supernova could probe the sub-eV region.Comment: 8 pages, 1 figure. Proceeding for the Galileo-Xu Guangqi meeting: The Sun, the Stars, the Universe and General Relativity; October 26-30, 2009, Shanghai (China). Accepted for publication at International Journal of Modern Physics

    2D Conformal Field Theories and Holography

    Get PDF
    It is known that the chiral part of any 2d conformal field theory defines a 3d topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3d topological theory that arises is a certain ``square'' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3d gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting ``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure

    On interrelations between Sibgatullin's and Alekseev's approaches to the construction of exact solutions of the Einstein-Maxwell equations

    Full text link
    The integral equations involved in Alekseev's "monodromy transform" technique are shown to be simple combinations of Sibgatullin's integral equations and normalizing conditions. An additional complex conjugation introduced by Alekseev in the integrands makes his scheme mathematically inconsistent; besides, in the electrovac case all Alekseev's principal value integrals contain an intrinsic error which has never been identified before. We also explain how operates a non-trivial double-step algorithm devised by Alekseev for rewriting, by purely algebraic manipulations and in a different (more complicated) parameter set, any particular specialization of the known analytically extended N-soliton electrovac solution obtained in 1995 with the aid of Sibgatullin's method.Comment: 7 pages, no figures, section II extende

    Nonlinear dynamics and band transport in a superlattice driven by a plane wave

    Get PDF
    A quantum particle transport induced in a spatially-periodic potential by a propagating plane wave has a number important implications in a range of topical physical systems. Examples include acoustically driven semiconductor superlattices and cold atoms in optical crystal. Here we apply kinetic description of the directed transport in a superlattice beyond standard linear approximation, and utilize exact path-integral solutions of the semiclassical transport equation. We show that the particle drift and average velocities have non-monotonic dependence on the wave amplitude with several prominent extrema. Such nontrivial kinetic behaviour is related to global bifurcations developing with an increase of the wave amplitude. They cause dramatic transformations of the system phase space and lead to changes of the transport regime. We describe different types of phase trajectories contributing to the directed transport and analyse their spectral content

    The extensions of gravitational soliton solutions with real poles

    Get PDF
    We analyse vacuum gravitational "soliton" solutions with real poles in the cosmological context. It is well known that these solutions contain singularities on certain null hypersurfaces. Using a Kasner seed solution, we demonstrate that these may contain thin sheets of null matter or may be simple coordinate singularities, and we describe a number of possible extensions through them.Comment: 14 pages, LaTeX, 6 figures included using graphicx; to appear in Gen. Rel. Gra

    Anomalous Hydrodynamics

    Full text link
    Our goal is to examine the role of anomalies in the hydrodynamic regime of field theories. We employ methods based on gauge/gravity duality to examine R-charge anomalies in the hydrodynamic regime of stronly t'Hooft coupled, large N, N = 4 Super Yang-Mills. We use a single particle spectrum treatment based on the familiar "level crossing" picture of chiral anomalies to investigate thermalized, massless QED. In each case, we work in the presence of a homogeneous background magnetic field, and find the same result. Regardless of whether a paricular current is anomalously non-conserved or not, as long as it participates in an anomalous 3-pt. correlator, its constitutive relation recieves a new term, proportional to a product of the anomaly coefficient, the magnetic field, and any charge density participating in the anomaly. This agrees with results found by Alekseev et.al. for QED. We include a general, symmetry based argument for the presence of such terms, and use linear response theory to determine their coefficients in a model with anomalous global charges. This last method we apply to briefly examine baryon transport in chiral QCD in a strong magnetic field.Comment: 23 pages, 2 figures. To be submitted to JHE

    Physical phase space of lattice Yang-Mills theory and the moduli space of flat connections on a Riemann surface

    Get PDF
    It is shown that the physical phase space of \g-deformed Hamiltonian lattice Yang-Mills theory, which was recently proposed in refs.[1,2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with (LV+1)(L-V+1) handles and therefore with the physical phase space of the corresponding (2+1)(2+1)-dimensional Chern-Simons model, where LL and VV are correspondingly a total number of links and vertices of the lattice. The deformation parameter \g is identified with 2πk\frac {2\pi}{k} and kk is an integer entering the Chern-Simons action.Comment: 12 pages, latex, no figure
    corecore