320 research outputs found
Radion Induced Spontaneous Baryogenesis
We describe a possible scenario for the baryogenesis arising when matter is
added on the branes of a Randall-Sundrum model with a radion stabilizing
potential. We show that the radion field can naturally induce spontaneous
baryogenesis when the cosmological evolution for the matter on the branes is
taken into account.Comment: LaTeX 2e, 8 pages and no figures, minor corrections to match version
to appear in MPL
Quantum Gravity Effects in Black Holes at the LHC
We study possible back-reaction and quantum gravity effects in the
evaporation of black holes which could be produced at the LHC through a
modification of the Hawking emission. The corrections are phenomenologically
taken into account by employing a modified relation between the black hole mass
and temperature. The usual assumption that black holes explode around TeV
is also released, and the evaporation process is extended to (possibly much)
smaller final masses. We show that these effects could be observable for black
holes produced with a relatively large mass and should therefore be taken into
account when simulating micro-black hole events for the experiments planned at
the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new
analysis of final products, final version accepted for publication in J.
Phys.
Direct electrification of Rh/Al2O3 washcoated SiSiC foams for methane steam reforming: An experimental and modelling study
Electrified methane steam reforming (eMSR) is a promising concept for low-carbon hydrogen production. We investigate an innovative eMSR reactor where SiSiC foams, coated with Rh/Al2O3 catalyst, act as electrical resistances to generate the reaction heat via the Joule effect. The novel system was studied at different temperatures, space velocities, operating pressures and catalyst loadings. Thanks to efficient heating, active catalyst and optimal substrate geometry, complete methane conversions were observed even at a high space velocity of 200000 Nl/h/kgcat. A specific energy demand as low as 1.24 kWh/Nm3H2, with an unprecedented energy efficiency of 81%, was achieved on a washcoated foam with catalyst density of 86.3 g/L (GHSV = 150000 Nl/h/kgcat, S/C = 4.1, ambient pressure). A mathematical model was validated against measured performance indicators and used to design an intensified eMSR unit for small scale H2 production.(c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/)
Italian politics in an era of recession : the end of bipolarism?
Italian politics have undergone momentous change in the 2007–2017 decade under the impact of the eurozone crisis, whose peak in 2011–2013 could be equated to the earlier watershed years of 1992–1994. The lasting impact of the upheaval in Italian politics in the early 1990s could still be felt in the decade of economic recession, but there were also new challenges prompted by a crisis that had its roots in international financial contagion and which unravelled under the shadow of both recession and austerity. The changes were of an economic, social, cultural, institutional, policy-oriented and political nature. If one central quintessentially political theme stands out by the end of this decade it is the apparent exhaustion of the quest for bipolarisation that was initiated in the early 1990s
Black hole evaporation in a spherically symmetric non-commutative space-time
Recent work in the literature has studied the quantum-mechanical decay of a
Schwarzschild-like black hole, formed by gravitational collapse, into
almost-flat space-time and weak radiation at a very late time. The relevant
quantum amplitudes have been evaluated for bosonic and fermionic fields,
showing that no information is lost in collapse to a black hole. On the other
hand, recent developments in noncommutative geometry have shown that, in
general relativity, the effects of non-commutativity can be taken into account
by keeping the standard form of the Einstein tensor on the left-hand side of
the field equations and introducing a modified energy-momentum tensor as a
source on the right-hand side. Relying on the recently obtained
non-commutativity effect on a static, spherically symmetric metric, we have
considered from a new perspective the quantum amplitudes in black hole
evaporation. The general relativity analysis of spin-2 amplitudes has been
shown to be modified by a multiplicative factor F depending on a constant
non-commutativity parameter and on the upper limit R of the radial coordinate.
Limiting forms of F have been derived which are compatible with the adiabatic
approximation.Comment: 8 pages, Latex file with IOP macros, prepared for the QFEXT07
Conference, Leipzig, September 200
Gravitational amplitudes in black-hole evaporation: the effect of non-commutative geometry
Recent work in the literature has studied the quantum-mechanical decay of a
Schwarzschild-like black hole, formed by gravitational collapse, into
almost-flat space-time and weak radiation at a very late time. The relevant
quantum amplitudes have been evaluated for bosonic and fermionic fields,
showing that no information is lost in collapse to a black hole. On the other
hand, recent developments in noncommutative geometry have shown that, in
general relativity, the effects of noncommutativity can be taken into account
by keeping the standard form of the Einstein tensor on the left-hand side of
the field equations and introducing a modified energy-momentum tensor as a
source on the right-hand side. The present paper, relying on the recently
obtained noncommutativity effect on a static, spherically symmetric metric,
considers from a new perspective the quantum amplitudes in black hole
evaporation. The general relativity analysis of spin-2 amplitudes is shown to
be modified by a multiplicative factor F depending on a constant
non-commutativity parameter and on the upper limit R of the radial coordinate.
Limiting forms of F are derived which are compatible with the adiabatic
approximation here exploited. Approximate formulae for the particle emission
rate are also obtained within this framework.Comment: 14 pages, 2 figures, Latex macros. In the final version, section 5
has been amended, the presentation has been improved, and References 21-24
have been added. Last misprints amended in Section 5 and Ref. 2
Mini Black Holes in the first year of the LHC
The experimental signatures of TeV-mass black hole (BH) formation in heavy
ion collisions at the LHC is examined. We find that the black hole production
results in a complete disappearance of all very high ({} GeV)
back-to-back correlated di-jets of total mass {}TeV. We show
that the subsequent Hawking-decay produces multiple hard mono-jets and discuss
their detection. We study the possibility of cold black hole remnant (BHR)
formation of mass and the experimental distinguishability of
scenarios with BHRs and those with complete black hole decay. Due to the rather
moderate luminosity in the first year of LHC running the least chance for the
observation of BHs or BHRs at this early stage will be by ionizing tracks in
the ALICE TPC. Finally we point out that stable BHRs would be interesting
candidates for energy production by conversion of mass to Hawking radiation.Comment: 10 pages, 2 figure
Energy-Momentum Tensor of Cosmological Fluctuations during Inflation
We study the renormalized energy-momentum tensor (EMT) of cosmological scalar
fluctuations during the slow-rollover regime for chaotic inflation with a
quadratic potential and find that it is characterized by a negative energy
density which grows during slow-rollover. We also approach the back-reaction
problem as a second-order calculation in perturbation theory finding no
evidence that the back-reaction of cosmological fluctuations is a gauge
artifact. In agreement with the results on the EMT, the average expansion rate
is decreased by the back-reaction of cosmological fluctuations.Comment: 19 pages, no figures.An appendix and references added, conclusions
unchanged, version accepted for publication in PR
Constraints on Astro-unparticle Physics from SN 1987A
SN 1987A observations have been used to place constraints on the interactions
between standard model particles and unparticles. In this study we calculate
the energy loss from the supernovae core through scalar, pseudo scalar, vector,
pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate
nuclear matter interacting through one pion exchange. In order to examine the
constraints on we considered the emission of scalar, pseudo
scalar, vector, pseudo vector and tensor through the pair annihilation process
. In addition we have re-examined other pair
annihilation processes. The most stringent bounds on the dimensionless coupling
constants for and are obtained from
nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector
couplings and for
tensor interaction, the best limit on dimensionless coupling is obtained from
and we get .Comment: 12 pages, 2 postscript figure
Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT
The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope
routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat
spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray
luminosity (E>100 MeV) averaged over 3 years of observations and peaking
on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest
high-redshift Fermi blazars. No published model with a single lens can account
for all of the observed characteristics of this complex system. Based on radio
observations, one expects time delayed variability to follow about 25 days
after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray
flares of PKS 1830-211 have been detected by the LAT in the considered period
and no substantial evidence for such a delayed activity was found. This allows
us to place a lower limit of about 6 on the gamma rays flux ratio between the
two lensed images. Swift XRT observations from a dedicated Target of
Opportunity program indicate a hard spectrum and with no significant
correlation of X-ray flux with the gamma-ray variability. The spectral energy
distribution can be modeled with inverse Compton scattering of thermal photons
from the dusty torus. The implications of the LAT data in terms of variability,
the lack of evident delayed flare events, and different radio and gamma-ray
flux ratios are discussed. Microlensing effects, absorption, size and location
of the emitting regions, the complex mass distribution of the system, an
energy-dependent inner structure of the source, and flux suppression by the
lens galaxy for one image path may be considered as hypotheses for
understanding our results.Comment: 14 pages, 6 figures, 2 tables. Accepted by the The Astrophysical
Journal. Corresponding authors: S. Ciprini (ASI ASDC & INAF OAR, Rome,
Italy), S. Buson (INAF Padova & Univ. of Padova, Padova, Italy), J. Finke
(NRL, Washington, DC, USA), F. D'Ammando (INAF IRA, Bologna, Italy
- …