2,620 research outputs found
Does the UK Local Finance Improvement Trust (Lift)Initiative Improve Risk Management in Public-Private Procurement?
The UK government introduced the Private Finance Initiative (PFI) and, latterly, the Local Improvement Finance Trust (LIFT) in an attempt to improve public service provision. As a variant of PFI, LIFT seeks to create a framework for the effective provision of primary care facilities. Like conventional PFI procurement, LIFT projects involve long-term contracts, complex multi-party interactions and thus create various risks to public sector clients. This paper investigates the advantages and disadvantages of LIFT with a focus on how this approach facilitates or impedes risk management from the public sector client perspective. Our paper concludes that LIFT has a potential for creating additional problems, including the further reduction of public sector control, conflicts of interest, the inappropriate use of enabling funds, and higher than market rental costs affecting the uptake of space in the buildings by local health care providers. However, there is also evidence that LIFT has facilitated new investment and that Primary Care Trusts (PCTs) have themselves started addressing some of the weaknesses of this procurement format through the bundling of projects and other forms of regional co-operation
Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers
The effects of hydrogen (H2) and deuterium (D2) absorption were studied in
two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using
polarized neutron reflectivity (PNR). PNR was measured in an external magnetic
field H applied in the plane of the sample with the magnetization M confined in
the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal
thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively.
Because of these small values, the actual layer chemical composition,
thickness, and interface roughness parameters were determined from the nuclear
scattering length density profile ({\rho}_n) and its derivative obtained from
both x-ray reflectivity and PNR, and uncertainties were determined using Monte
Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred
throughout the samples, absorption in the multilayer stack was modest (0.02 D
per Pd atom) and thus did not expand. Direct magnetometry showed that H2
absorption decreased the total M at saturation and increased the component of M
in the plane of the sample when not at saturation. The PNR magnetic scattering
length density ({\rho}_m) revealed that the Pd layers in the multilayer stack
were magnetized and that their magnetization was preferentially modified upon
D2 absorption. In one sample, a modulation of M with twice the multilayer
period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption.
These results indicate that H2 or D2 absorption decreases both the PMA and
total magnetization of the samples. The lack of measurable expansion during
absorption indicates that these changes are primarily governed by modification
of the electronic structure of the material.Comment: to appear in Physics review B, 201
Environmental heat in relation to child health outcomes
In the United States, annual average temperature is projected to rise throughout the 21st century, and both extremely hot days and heat waves are expected to become more intense and frequent. Global climate change is already negatively affecting human health and with continued warming, adverse health outcomes are expected to be exacerbated, especially among already susceptible populations, like children.
This dissertation responds to the call for scientific research on potential health consequences of climate change among children. Pregnant women and children, especially infants, are considered vulnerable to a number of climate-sensitive health outcomes, including heat stress, respiratory disease, and diarrheal illness. Specifically, with the three studies described here, we aimed to contribute to the growing body of research establishing baseline relationships between environmental heat and child health outcomes in the United States. For Studies 1 and 2, we examined exposure to heat wave, defined multiple ways, in relation to preterm birth and pediatric asthma, respectively, using meteorological data from University of Massachusetts, Lowell and health data from the Massachusetts Department of Public Health. The first study overall found little to no short-term association between maternal heat wave exposure and preterm birth among women in ten large Massachusetts cities, using five definitions of heat wave. However, there were potential differences by gestational age that should be explored further in future studies. Findings from the second study provided some evidence for increased rates of emergency department (ED) visits for asthma/wheeze, among Massachusetts children during and immediately following heat waves, although excess numbers were small. Rates of all-cause pediatric ED visits were also elevated during heat waves and the days following, corresponding to hundreds of excess visits. For Study 3, we used national data from the U.S. Centers for Disease Control and Prevention’s Laboratory-based Enteric Disease Surveillance system to evaluate the association between temperature-based season and incident Salmonella infection in infants. Results confirmed elevated rates of infant infection in the summer compared to winter and revealed a greater absolute impact among infants compared to other age groups, especially in the South and for Salmonella serotypes commonly from environmental, non-food sources.
Findings from this dissertation should not be viewed in isolation, but rather as part of a growing body of scientific literature on the potential impacts of climate change on child health. This work provides evidence that environmental heat is associated with certain adverse health outcomes among children in the U.S. and raises questions for further research. Results could be used as a baseline and compared with future estimates to assess changes in vulnerability and inform public health interventions
Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface
Using self-assembly techniques, x-ray reflectivity measurements, and computer
simulations, we study the effective interaction between charged polymer rods
and surfaces. Long-time Brownian dynamics simulations are used to measure the
effective adhesion force acting on the rods in a model consisting of a planar
array of uniformly positively charged, stiff rods and a negatively charged
planar substrate in the presence of explicit monovalent counterions and added
monovalent salt ions in a continuous, isotropic dielectric medium. This
electrostatic model predicts an attractive polymer-surface adhesion force that
is weakly dependent on the bulk salt concentration and that shows fair
agreement with a Debye-Huckel approximation for the macroion interaction at
salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on
poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native
oxide of silicon show that monolayer structure, electron density, and surface
roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
Absolute continuity of symmetric Markov processes
We study Girsanov's theorem in the context of symmetric Markov processes,
extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov
transformations of ``gradient type.'' We investigate the most general Girsanov
transformation leading to another symmetric Markov process. This investigation
requires an extension of the forward-backward martingale method of Lyons-Zheng,
to cover the case of processes with jumps.Comment: Published by the Institute of Mathematical Statistics
(http://www.imstat.org) in the Annals of Probability
(http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000043
- …