302 research outputs found

    The Fermionic Projector, Entanglement, and the Collapse of the Wave Function

    Get PDF
    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.Comment: 17 pages, LaTeX, 2 figures, minor changes (published version

    Non-Existence of Time-Periodic Solutions of the Dirac Equation in a Reissner-Nordstrom Black Hole Background

    Get PDF
    It is shown analytically that the Dirac equation has no normalizable, time-periodic solutions in a Reissner-Nordstrom black hole background; in particular, there are no static solutions of the Dirac equation in such a background field. The physical interpretation is that Dirac particles can either disappear into the black hole or escape to infinity, but they cannot stay on a periodic orbit around the black hole.Comment: 24 pages, 2 figures (published version

    Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    Full text link
    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which is time-periodic, thus running through an infinite number of contraction and expansion cycles.Comment: 8 pages, LaTeX, 4 figures, statement on energy conditions correcte

    The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann-Robertson-Walker Universe

    Full text link
    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a space-time normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form.Comment: 22 pages, LaTeX, sign error in equation (3.7) correcte

    The repulsive nature of naked singularities from the point of view of Quantum Mechanics

    Full text link
    We use the Dirac equation coupled to a background metric to examine what happens to quantum mechanical observables like the probability density and the radial current in the vicinity of a naked singularity of the Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac particle is regular in the point of the singularity. We show that the probability density is exactly zero at the singularity reflecting quantum-mechanically the repulsive nature of the naked singularity. Furthermore, the surface integral of the radial current over a sphere in the vicinity of the naked singularity turns out to be also zero.Comment: 11 page

    Formation of methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in anoxic marine and fresh water sediments

    Get PDF
    Anaerobic formation of dimethylsulfide (DMS) and methylmercaptan (MSH) in anoxic sulfide-containing slurries from marine and fresh water sediments was stimulated by addition of syringate (4-hydroxy,3,5,-dimethoxybenzoate) and 3,4,5,-trimethoxybenzoate. The release of DMS and MSH occurred during the consumption of the aromatic monomers and ceased after their depletion. DMS was the dominant methylated sulfur compound in fresh water sediments, in contrast to marine sediments where MSH was predominant. No production of volatile organic sulfur compounds was observed in slurries containing gallate (3,4,5,-trihydroxybenzoate) or in autoclaved controled. About 50-65% of the methoxy carbon could be accounted for by peak accumulation of DMS and MSH. In the saline sediments, large amounts of CH4 were formed during the period when DMS and MSH disappeared. About 65-70% of the methylcarbon of the volatile methylated sulfur compounds (VMSC) could be accounted for in the produced CH4. This study demonstrates a previously unknown microbial process by which DMS and MSH are formed during anaerobic decomposition of methoxylated aromatic compounds in marine and freshwater sediments. © 1990

    Causal Fermion Systems and the ETH Approach to Quantum Theory

    Get PDF
    After reviewing the theory of "causal fermion systems" (CFS theory) and the "Events, Trees, and Histories Approach" to quantum theory (ETH approach), we compare some of the mathematical structures underlying these two general frameworks and discuss similarities and differences. For causal fermion systems, we introduce future algebras based on causal relations inherent to a causal fermion system. These algebras are analogous to the algebras previously introduced in the ETH approach. We then show that the spacetime points of a causal fermion system have properties similar to those of "events", as defined in the ETH approach. Our discussion is underpinned by a survey of results on causal fermion systems describing Minkowski space that show that an operator representing a spacetime point commutes with the algebra in its causal future, up to tiny corrections that depend on a regularization length

    Superconducting Hair on Charged Black String Background

    Full text link
    Behaviour of Dirac fermions in the background of a charged black string penetrated by an Abelian Higgs vortex is elaborated. One finds the evidence that the system under consideration can support fermion fields acting like a superconducting cosmic string in the sence that a nontrivial Dirac fermion field can be carried by the system in question. The case of nonextremal and extremal black string vortex systems were considered. The influence of electric and Higgs charge, the winding number and the fermion mass on the fermion localization near the black string event horizon was studied. It turned out that the extreme charged black string expelled fermion fields more violently comparing to the nonextremal one.Comment: RevTex, 16 pages, 12 figures, to be published in Phys.REvD1

    Resolvent estimates for normally hyperbolic trapped sets

    Full text link
    We give pole free strips and estimates for resolvents of semiclassical operators which, on the level of the classical flow, have normally hyperbolic smooth trapped sets of codimension two in phase space. Such trapped sets are structurally stable and our motivation comes partly from considering the wave equation for Kerr black holes and their perturbations, whose trapped sets have precisely this structure. We give applications including local smoothing effects with epsilon derivative loss for the Schr\"odinger propagator as well as local energy decay results for the wave equation.Comment: Further changes to erratum correcting small problems with Section 3.5 and Lemma 4.1; this now also corrects hypotheses, explicitly requiring trapped set to be symplectic. Erratum follows references in this versio

    A mechanism for dark matter and dark energy in the theory of causal fermion systems

    Get PDF
    It is shown that the theory of causal fermion systems gives rise to a novel mechanism for dark matter and dark energy. This mechanism is first worked out for cubical subsets of Minkowski space with periodic boundary conditions. Then it is studied in Friedmann–Lemaître–Roberson–Walker spacetimes. The magnitude of the effect scales like one over the lifetime of the Universe squared. In contrast to most models of dark matter and dark energy, our mechanism does not postulate any new particles. Instead, it is a result of the collective behavior of all the wave functions which form the Dirac sea, needed in order to arrange correlated initial and end quantum states of the Universe
    • …
    corecore