3,093 research outputs found

    Strategies for health services

    Get PDF

    Vertical velocities from proper motions of red clump giants

    Full text link
    We derive the vertical velocities of disk stars in the range of Galactocentric radii of R=5-16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. We used the proper motions of the PPMXL survey, correcting of systematic errors with the reference of quasars. From the color-magnitude diagram K versus (J-K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. A simple model of warp with the height of the disk z_w(R,phi)=gamma (R-R_sun) sin(phi-phi_w) fits the vertical motions if d(gamma)/dt/gamma=-34+/-17 Gyr^{-1}; the contribution to d(gamma)/dt comes from the southern warp and is negligible in the north. The vertical motion in the warp apparently indicates that the main S-shaped structure of the warp is a long-lived feature, whereas the perturbation that produces an irregularity in the southern part is most likely a transient phenomenon. With the use of the Gaia end-of-mission products together with spectroscopically classified red clump giants, the precision in vertical motions can be increased by an order of magnitude at least.Comment: Accepted for publication in A&A. arXiv admin note: text overlap with arXiv:1402.355

    Els reptes del mestre del segle XXI

    Get PDF

    Kinematic groups across the MW disc: insights from models and from the RAVE catalogue

    Get PDF
    With the advent of the Gaia data, the unprecedented kinematic census of great part of the Milky Way disc will allow us to characterise the local kinematic groups and new groups in different disc neighbourhoods. First, we show here that the models predict a stellar kinematic response to the spiral arms and bar strongly dependent on disc position. For example, we find that the kinematic groups induced by the spiral arm models change significantly if one moves only ~ 0.6 kpc in galactocentric radius, but ~ 2 kpc in azimuth. There are more and stronger groups as one approaches the spiral arms. Depending on the spiral pattern speed, the kinematic imprints are more intense in nearby vicinities or far from the Sun. Secondly, we present a preliminary study of the kinematic groups observed by RAVE. This sample will allow us, for the first time, to study the dependence on Galactic position of the (thin and thick) disc moving groups. In the solar neighbourhood, we find the same kinematics groups as detected in previous surveys, but now with better statistics and over a larger spatial volume around the Sun. This indicates that these structures are indeed large scale kinematic features.Comment: 4 pages, 3 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (April 17-22, 2011), C. Reyle, A. Robin, M. Schultheis (eds.

    Understanding the spiral structure of the Milky Way using the local kinematic groups

    Get PDF
    We study the spiral arm influence on the solar neighbourhood stellar kinematics. As the nature of the Milky Way (MW) spiral arms is not completely determined, we study two models: the Tight-Winding Approximation (TWA) model, which represents a local approximation, and a model with self-consistent material arms named PERLAS. This is a mass distribution with more abrupt gravitational forces. We perform test particle simulations after tuning the two models to the observational range for the MW spiral arm properties. We explore the effects of the arm properties and find that a significant region of the allowed parameter space favours the appearance of kinematic groups. The velocity distribution is mostly sensitive to the relative spiral arm phase and pattern speed. In all cases the arms induce strong kinematic imprints for pattern speeds around 17 km/s/kpc (close to the 4:1 inner resonance) but no substructure is induced close to corotation. The groups change significantly if one moves only ~0.6 kpc in galactocentric radius, but ~2 kpc in azimuth. The appearance time of each group is different, ranging from 0 to more than 1 Gyr. Recent spiral arms can produce strong kinematic structures. The stellar response to the two potential models is significantly different near the Sun, both in density and kinematics. The PERLAS model triggers more substructure for a larger range of pattern speed values. The kinematic groups can be used to reduce the current uncertainty about the MW spiral structure and to test whether this follows the TWA. However, groups such as the observed ones in the solar vicinity can be reproduced by different parameter combinations. Data from velocity distributions at larger distances are needed for a definitive constraint.Comment: 18 pages, 21 figures, 4 tables; acccepted for publication in MNRA

    La dona ahir i avui

    Get PDF

    L'elaboraciĂł casolana del vi

    Get PDF

    Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination

    Get PDF
    Plastic litter is an issue of global concern. In this work Mytilus galloprovincialis was used to study the distribution and effects of polystyrene nanoplastics (PS NPs) of different sizes (50 nm, 100 nm and 1 mu m) on immune cells. Internalization and translocation of NPs to hemolymph were carried out by in vivo experiments, while endocytic routes and effects of PS NPs on hemocytes were studied in vitro. The smallest PS NPs tested were detected in the digestive gland and muscle. A fast and size-dependent translocation of PS NPs to the hemolymph was recorded after 3 h of exposure. The internalization rate of 50 nm PS NPs was lower when caveolae and clathrin endocytosis pathways were inhibited. On the other hand, the internalization of larger particles decreased when phagocytosis was inhibited. The hemocytes exposed to NPs had changes in motility, apoptosis, ROS and phagocytic capacity. However, they showed resilience when were infected with bacteria after PS NP exposure being able to recover their phagocytic capacity although the expression of the antimicrobial peptide Myticin C was reduced. Our findings show for the first time the translocation of PS NPs into hemocytes and how their effects trigger the loss of its functional parameters
    • 

    corecore