338 research outputs found

    Közjogi provizórium, jogfolytonosság, új közjogi irány Az 1919/1920-1944 közötti magyarországi alkotmányjog-tudomány vázlata

    Get PDF
    Az 1919/1920 és 1944 közötti évtizedekben érvényesülő közjogi provizórium mérlegét Molnár Kálmán, a pécsi tudományegyetem professzora vonta meg egyik 1945-ben tartott előadásában. A provizórikus jogrend szembetűnő fogyatékosságának tartotta, hogy az idők múlásával a magyar alkotmányos hagyományok figyelembe vétele helyett a látszatalkotmányosság „Potyemkin-falva” épült fel, egyúttal a „nemzeti önrendelkezés szelleme” helyett a kivételes hatalom szelleme érvényesült, továbbá előtérbe került a magyar alkotmányos hagyományokkal ellentétes nemzetiszocializmus Gömbös Gyula és Szálasi Ferenc nevével fémjelzett kaszárnyaszelleme. Vajon mennyiben érzékelték az alkotmányjog-tudomány képviselői a közjogi provizórium időszakában a Molnár Kálmán által diagnosztizált kisiklást? Milyen volt egyáltalán a közjogi provizórium arculata? Melyek voltak a korszak fontosabb alkotmányjogi vitakérdései? Mindezekre a felvetésekre akkor kaphatunk választ, ha - a személyi körön és az intézményi kereteken kívül - áttekintjük, hogy milyen fontosabb területeket gondoztak a két világháború közötti korszakban a hazai alkotmányjog-tudomány képviselői, továbbá miként vélekedtek a magyar alkotmány és alkotmányjog változásairól, illetve a hazai alkotmányjogot ért kihívásokról

    Contribution of a time-dependent metric on the dynamics of an interface between two immiscible electro-magnetically controllable Fluids

    Full text link
    We consider the case of a deformable material interface between two immiscible moving media, both of them being magnetiable. The time dependence of the metric at the interface introduces a non linear term, proportional to the mean curvature, in the surface dynamical equations of mass momentum and angular momentum. We take into account the effects of that term also in the singular magnetic and electric fields inside the interface which lead to the existence of currents and charges densities through the interface, from the derivation of the Maxwell equations inside both bulks and the interface. Also, we give the expression for the entropy production and of the different thermo-dynamical fluxes. Our results enlarge previous results from other theories where the specific role of the time dependent surface metric was insufficiently stressed.Comment: 25 page

    Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis

    Get PDF
    International audienceWithin the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluorophenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-m ethyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino) 3-methylbutyrylamino) propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants. Cell Death and Disease (2012) 3, e250; doi:10.1038/cddis.2011.133; published online 12 January 201

    Effects of repetitive exposure to pain and morphine treatment on the neonatal rat brain

    Get PDF
    Background: Untreated exposure to pain in preterm neonates might damage the vulnerable premature brain and alter development. Pain treatment is limited because analgesic agents may also have adverse neurodevelopmental consequences in newborns. Objective: To study the effects of neonatal pain and morphine treatment on the developing brain in a n

    Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia

    Get PDF
    Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49+/-2.09% of CD4-positive T cells to 23.50+/-3.05% and from 3.85+/-1.45% to 23.27+/-7.64%, respectively. Blood pressure and albuminuria (30.6+/-15.1 versus 14.6+/-5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66+/-0.03 versus 2.37+/-0.05 g) and in the treatment protocol (3.04+/-0.04 versus 2.54+/-0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation

    Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus

    Get PDF
    BACKGROUND: Elevated intracranial pressure (ICP) resulting from impaired drainage of cerebrospinal fluid (CSF) causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP) in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of elevated ICP has been available for clinical diagnosis and monitoring. In experimental animal models, nerve growth factor (NGF) and neurotrophin-3 (NT-3) have been shown to be produced by glial cells as an adaptive response to hypoxia. We investigated whether concentrations of NGF and NT-3 are increased in the CSF of children with hydrocephalus. METHODS: NGF was determined in CSF samples collected from 42 hydrocephalic children on 65 occasions (taps or shunt placement surgery). CSF samples obtained by lumbar puncture from 22 children with suspected, but unconfirmed bacterial infection served as controls. Analysis was performed using ELISA techniques. RESULTS: NGF concentrations in hydrocephalic children were over 50-fold increased compared to controls (median 225 vs 4 pg/mL, p < 0.0001). NT-3 was detectable (> 1 pg/mL) in 14/31 hydrocephalus samples at 2–51 pg/mL but in none of 11 control samples (p = 0.007). CONCLUSION: NGF and NT-3 concentrations are increased in children with hydrocephalus. This may represent an adaptive response of the brain to elevated ICP

    Subclinical Inflammation and Diabetic Polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany)

    Get PDF
    Subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, but data on diabetic neuropathies are scarce. Therefore, we investigated whether circulating concentrations of acute-phase proteins, cytokines, and chemokines differ among diabetic patients with or without diabetic polyneuropathy. RESEARCH DESIGN AND METHODS - We measured 10 markers of subclinical inflammation in 227 type 2 diabetic patients with diabetic polyneuropathy who participated in the population-based MONICA/KORA Survey F3 (2004-2005; Augsburg, Germany). Diabetic polyneuropathy was diagnosed using the Michigan Neuropathy Screening Instrument (MNSI). RESULTS - After adjustment for multiple confounders, high levels of C-reactive protein and interleukin (IL)-6 were most consistently associated with diabetic polyneuropathy, high MNSI score, and specific neuropathic deficits, whereas some inverse associations were seen for IL-18. CONCLUSIONS - This study shows that subclinical inflammation is associated with diabetic polyneuropathy and neuropathic impairments. This association appears rather specific because only certain immune mediators and impairments are involved

    Metal hydrides for concentrating solar thermal power energy storage

    Get PDF
    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost for Concentrating Solar-thermal Power (CSP). We focus on the underlying technology that allows metal hydrides to function as Thermal Energy Storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room-temperature and as high as 1100 oC. The potential of metal hydrides for thermal storage is explored while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature thermal energy storage are also addressed
    corecore