13,156 research outputs found

    How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study.

    Get PDF
    BackgroundPatients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number of ORs needed to minimize patient wait times while optimizing resources.MethodsWe used patient arrival data and surgical procedure length from our institution, a tertiary-care academic medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times.ResultsSimulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time = 0 min (mean = 19 min) for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time for urgent cases needing surgery within 8-12 h was 34 min (mean = 136 min), with wait time at the 95th percentile = 474 min. The effect of changes in surgical length and volume on wait times was determined with sensitivity analysis.ConclusionsMonte Carlo simulation can guide decisions on how to balance resources for elective and non-elective surgical procedures

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure

    The multifrequency behaviour of the recurrent nova RS Ophiuchi

    Full text link
    This review concentrates on the multifrequency behaviour of RS Ophiuchi and in particular during its latest outburst. Confirmation of the 1945 outburst, bipolar outflows and its possible fate as a Type Ia Supernova are discussed.Comment: 5 pages, 5 figures, in The Golden Age of Cataclysmic Variables and Related Objects, F. Giovannelli & L. Sabau-Graziati (eds.), Mem. SAIt. 83 N.2 (in press

    The ATLAS-SPT Radio Survey of Cluster Galaxies

    Get PDF
    Using a high-performance computing cluster to mosaic 4,787 pointings, we have imaged the 100 sq. deg. South Pole Telescope (SPT) deep-field at 2.1 GHz using the Australian Telescope Compact Array to an rms of 80 μ\muJy and a resolution of 8". Our goal is to generate an independent sample of radio-selected galaxy clusters to study how the radio properties compare with cluster properties at other wavelengths, over a wide range of redshifts in order to construct a timeline of their evolution out to z1.3z \sim 1.3. A preliminary analysis of the source catalogue suggests there is no spatial correlation between the clusters identified in the SPT-SZ catalogue and our wide-angle tail galaxies.Comment: 9 pages, 4 figures. Submitted to Proceedings of Science for "The many facets of extragalactic radio surveys: towards new scientific challenges", Bologna, Italy 20-23 October 2015 (EXTRA-RADSUR2015

    Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    Get PDF
    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models of the nova eruption, assuming the free-free process, and show the effects of varying different parameters on the radio light curves. The parameters considered include the ratio of the minor- to major-axis, the inclination angle and shell thickness (further parameters are provided in the appendix). We also show the uncertainty introduced when fitting spherical model synthetic light curves to bipolar model synthetic light curves. We find that the optically thick phase rises with the same power law (Sνt2S_{\nu} \propto t^2) for both the spherical and bipolar models. In the bipolar case there is a "plateau" phase -- depending on the thickness of the shell as well as the ratio of the minor- to major-axis -- before the final decline, that follows the same power law (Sνt3S_{\nu} \propto t^{-3}) as in the spherical case. Finally, fitting spherical models to the bipolar model synthetic light curves requires, in the worst case scenario, doubling the ejected mass, more than halving the electron temperature and reducing the shell thickness by nearly a factor of 10. This implies that in some systems we have been over predicting the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying movie to figure 3 available at http://www.ast.uct.ac.za/~valerio/papers/radioI

    The Market for Teacher Quality

    Get PDF
    Much of education policy focuses on improving teacher quality, but most policies lack strong research support. We use student achievement gains to estimate teacher value-added, our measure of teacher quality. The analysis reveals substantial variation in the quality of instruction, most of which occurs within rather than between schools. Although teacher quality appears to be unrelated to advanced degrees or certification, experience does matter -- but only in the first year of teaching. We also find that good teachers tend to be effective with all student ability levels but that there is a positive value of matching students and teachers by race. In the second part of the analysis, we show that teachers staying in our sample of urban schools tend to be as good as or better than those who exit. Thus, the main cost of large turnover is the introduction of more first year teachers. Finally, there is little or no evidence that districts that offer higher salaries and have better working conditions attract the higher quality teachers among those who depart the central city district. The overall results have a variety of direct policy implications for the design of school accountability and the compensation of teachers.

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: III. X-ray spectral modelling

    Full text link
    Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.Comment: 13 pages, 5 figures, Accepted for publication in Ap

    Gravitational Collapse of Self-Similar and Shear-free Fluid with Heat Flow

    Full text link
    A class of solutions to Einstein field equations is studied, which represents gravitational collapse of thick spherical shells made of self-similar and shear-free fluid with heat flow. It is shown that such shells satisfy all the energy conditions, and the corresponding collapse always forms naked singularities.Comment: 34 pages, 9 figures, late
    corecore