155 research outputs found

    Post-processed data and graphical tools for a CONUS-wide eddy flux evapotranspiration dataset

    Get PDF
    Large sample datasets of in situ evapotranspiration (ET) measurements with well documented data provenance and quality assurance are critical for water management and many fields of earth science research. We present a post-processed ET oriented dataset at daily and monthly timesteps, from 161 stations, including 148 eddy covariance flux towers, that were chosen based on their data quality from nearly 350 stations across the contiguous United States. In addition to ET, the data includes energy and heat fluxes, meteorological measurements, and reference ET downloaded from grid- MET for each flux station. Data processing techniques were conducted in a reproducible manner using open-source soft- ware. Most data initially came from the public AmeriFlux network, however, several different networks (e.g., the USDA- Agricultural Research Service) and university partners pro- vided data that was not yet public. Initial half-hourly energy balance data were gap-filled and aggregated to daily frequency, and turbulent fluxes were corrected for energy balance closure error using the FLUXNET2015/ONEFlux energy balance ratio approach. Metadata, diagnostics of energy balance, and interactive graphs of time series data are included for each station. Although the dataset was developed primarily to benchmark satellite-based remote sensing ET models of the OpenET initiative, there are many other potential uses, such as validation for a range of regional hydrologic and atmospheric models

    Post-processed data and graphical tools for a CONUS-wide eddy flux evapotranspiration dataset

    Get PDF
    Large sample datasets of in situ evapotranspiration (ET) measurements with well documented data provenance and quality assurance are critical for water management and many fields of earth science research. We present a post-processed ET oriented dataset at daily and monthly timesteps, from 161 stations, including 148 eddy covariance flux towers, that were chosen based on their data quality from nearly 350 stations across the contiguous United States. In addition to ET, the data includes energy and heat fluxes, meteorological measurements, and reference ET downloaded from gridMET for each flux station. Data processing techniques were conducted in a reproducible manner using open-source software. Most data initially came from the public AmeriFlux network, however, several different networks (e.g., the USDA-Agricultural Research Service) and university partners provided data that was not yet public. Initial half-hourly energy balance data were gap-filled and aggregated to daily frequency, and turbulent fluxes were corrected for energy balance closure error using the FLUXNET2015/ONEFlux energy balance ratio approach. Metadata, diagnostics of energy balance, and interactive graphs of time series data are included for each station. Although the dataset was developed primarily to benchmark satellite-based remote sensing ET models of the OpenET initiative, there are many other potential uses, such as validation for a range of regional hydrologic and atmospheric models

    Spatial estimation of actual evapotranspiration over irrigated turfgrass using sUAS thermal and multispectral imagery and TSEB model

    Get PDF
    Green urban areas are increasingly affected by water scarcity and climate change. The combination of warmer temperatures and increasing drought poses substantial challenges for water management of urban landscapes in the western U.S. A key component for water management, actual evapotranspiration (ETa) for landscape trees and turfgrass in arid regions is poorly documented as most rigorous evapotranspiration (ET) studies have focused on natural or agricultural areas. ET is a complex and non-linear process, and especially difficult to measure and estimate in urban landscapes due to the large spatial variability in land cover/land use and relatively small areas occupied by turfgrass in urban areas. Therefore, to understand water consumption processes in these landscapes, efforts using standard measurement techniques, such as the eddy covariance (EC) method as well as ET remote sensing-based modeling are necessary. While previous studies have evaluated the performance of the remote sensing-based two-source energy balance (TSEB) in natural and agricultural landscapes, the validation of this model in urban turfgrass remains unknown. In this study, EC flux measurements and hourly flux footprint models were used to validate the energy fluxes from the TSEB model in green urban areas at golf course near Roy, Utah, USA. High-spatial resolution multispectral and thermal imagery data at 5.4 cm were acquired from small Unmanned Aircraft Systems (sUAS) to model hourly ETa. A protocol to measure and estimate leaf area index (LAI) in turfgrass was developed using an empirical relationship between spectral vegetation indices (SVI) and observed LAI, which was used as an input variable within the TSEB model. In addition, factors such as sUAS flight time, shadows, and thermal band calibration were assessed for the creation of TSEB model inputs. The TSEB model was executed for five datasets collected in 2021 and 2022, and its performance was compared against EC measurements. For ETa to be useful for irrigation scheduling, an extrapolation technique based on incident solar radiation was used to compute daily ETa from the hourly remotely-sensed UAS ET. A daily flux footprint and measured ETa were used to validate the daily extrapolation technique. Results showed that the average of corrected daily ETa values in summer ranged from about 4.6 mm to 5.9 mm in 2021 and 2022. The Near Infrared (NIR) and Red Edge-based SVI derived from sUAS imagery were strongly related to LAI in turfgrass, with the highest coefficient of determination (R2) (0.76–0.84) and the lowest root mean square error (RMSE) (0.5–0.6). The TSEB’s latent and sensible heat flux retrievals were accurate with an RMSE 50 W m−2 and 35 W m−2 respectively compared to EC closed energy balance. The expected RMSE of the upscaled TSEB daily ETa estimates across the turfgrass is below 0.6 mm  day−1, thus yielding an error of 10% of the daily total. This study highlights the ability of the TSEB model using sUAS imagery to estimate the spatial variation of daily ETa for an urban turfgrass surface, which is useful for landscape irrigation management under drought conditions.Peer reviewe

    The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment

    Get PDF
    Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment

    Reversal of childhood idiopathic scoliosis in an adult, without surgery: a case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients with mild or moderate thoracic scoliosis (Cobb angle <50-60 degrees) suffer disproportionate impairment of pulmonary function associated with deformities in the sagittal plane and reduced flexibility of the spine and chest cage. Long-term improvement in the clinical signs and symptoms of childhood onset scoliosis in an adult, without surgical intervention, has not been documented previously.</p> <p>Case presentation</p> <p>A diagnosis of thoracic scoliosis (Cobb angle 45 degrees) with pectus excavatum and thoracic hypokyphosis in a female patient (DOB 9/17/52) was made in June 1964. Immediate spinal fusion was strongly recommended, but the patient elected a daily home exercise program taught during a 6-week period of training by a physical therapist. This regime was carried out through 1992, with daily aerobic exercise added in 1974. The Cobb angle of the primary thoracic curvature remained unchanged. Ongoing clinical symptoms included dyspnea at rest and recurrent respiratory infections. A period of multimodal treatment with clinical monitoring and treatment by an osteopathic physician was initiated when the patient was 40 years old. This included deep tissue massage (1992-1996); outpatient psychological therapy (1992-1993); a daily home exercise program focused on mobilization of the chest wall (1992-2005); and manipulative medicine (1994-1995, 1999-2000). Progressive improvement in chest wall excursion, increased thoracic kyphosis, and resolution of long-standing respiratory symptoms occurred concomitant with a >10 degree decrease in Cobb angle magnitude of the primary thoracic curvature.</p> <p>Conclusion</p> <p>This report documents improved chest wall function and resolution of respiratory symptoms in response to nonsurgical approaches in an adult female, diagnosed at age eleven years with idiopathic scoliosis.</p

    SOSORT consensus paper: school screening for scoliosis. Where are we today?

    Get PDF
    This report is the SOSORT Consensus Paper on School Screening for Scoliosis discussed at the 4th International Conference on Conservative Management of Spinal Deformities, presented by SOSORT, on May 2007. The objectives were numerous, 1) the inclusion of the existing information on the issue, 2) the analysis and discussion of the responses by the meeting attendees to the twenty six questions of the questionnaire, 3) the impact of screening on frequency of surgical treatment and of its discontinuation, 4) the reasons why these programs must be continued, 5) the evolving aim of School Screening for Scoliosis and 6) recommendations for improvement of the procedure
    corecore