11,165 research outputs found

    A survey of UV-excess AGNs in the South Galactic Pole

    Get PDF
    Spectra, position, magnitudes and colors are presented for 485 faint (B<20.5) emission line objects selected with the ultraviolet-excess (UVX) criterion on a area of 24.6 sq. deg in the South Galactic Pole. The objects were selected from the analysis of pixel-to-pixel stacking of COSMOS scans of UKST U, J and R plates. The candidates were observed with the Meudon-ESO Fiber Optics System (MEFOS) at the ESO 3.6m telescope. 429 type 1 AGNs have been identified (373 in the redshift range 0.3<z<2.2). This sample has allowed the measure of a difference on the QSO clustering evolution in comparison with that found for galaxies (La Franca et al 1998). The region is part of the ESO Imaging Survey (EIS) and of the 2dF QSO redshift survey.Comment: 32 pages, 19 figures. To appear on A&AS, revised after minor comment

    The Double Quasar Q2138-431: Lensing by a Dark Galaxy?

    Get PDF
    We report the discovery of a new gravitational lens candidate Q2138-431AB, comprising two quasar images at a redshift of 1.641 separated by 4.5 arcsecs. The spectra of the two images are very similar, and the redshifts agree to better than 115 km.sec−1^{-1}. The two images have magnitudes BJ=19.8B_J = 19.8 and BJ=21.0B_J = 21.0, and in spite of a deep search and image subtraction procedure, no lensing galaxy has been found with R<23.8R < 23.8. Modelling of the system configuration implies that the mass-to-light ratio of any lensing galaxy is likely to be around 1000M⊙/L⊙1000 M_{\odot}/L_{\odot}, with an absolute lower limit of 200M⊙/L⊙200 M_{\odot}/L_{\odot} for an Einstein-de Sitter universe. We conclude that the most likely explanation of the observations is gravitational lensing by a dark galaxy, although it is possible we are seeing a binary quasar.Comment: 17 pages (Latex), 8 postscript figures included, accepted by MNRA

    Conicoid Mirrors

    Get PDF
    The first order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources.Comment: 9 page

    Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Full text link
    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors [1-4]. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T-H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure

    Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs)

    Get PDF
    Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 mM, 44 ± 3 mM, 17 ± 2 mM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface

    Colour changes in quasar light curves

    Full text link
    The study of quasar variability has long been seen as a way to understanding the structure of the central engine of active galactic nuclei, and as a means of verifying the morphology of the standard model. Much work has already been done on the statistical properties of light curves monitored in one colour, and it is now possible to use these observations to test predictions of theoretical models. The addition of a second colour can add enormously to the power of such tests, and put tight constraints on the nature of the variations. In this paper a yearly monitoring programme of several hundred quasars in blue and red passbands covering 21 years is presented. The statistics of colour changes are examined for a 15 year period of homogeneous data with Fourier power spectrum analysis, in a form suitable for testing against theoretical predictions. The results of the Fourier analysis show that there is more power in blue light on all timescales than in the red. Examination of the light curves shows several different modes of colour change. However, if allowance is made for the effects of the underlying host galaxy, the variations become close to achromatie. There are however structural differences between red and blue light curves which cannot be accounted for in this way, and various modes of variability including disc instability and microlensing are examined to provide explanations for these features.Comment: 11 pages including 6 figures. Published in MNRA
    • …
    corecore