51 research outputs found

    Time-dependent spherically symmetric covariant Galileons

    Full text link
    We study spherically symmetric solutions of the cubic covariant Galileon model in curved spacetime in presence of a matter source, in the test scalar field approximation. We show that a cosmological time evolution of the Galileon field gives rise to an induced matter-scalar coupling, due to the Galileon-graviton kinetic braiding, therefore the solution for the Galileon field is non trivial even if the bare matter-scalar coupling constant is set to zero. The local solution crucially depends on the asymptotic boundary conditions, and in particular, Minkowski and de Sitter asymptotics correspond to different branches of the solution. We study the stability of these solutions, namely, the well-posedness of the Cauchy problem and the positivity of energy for scalar and tensor perturbations, by diagonalizing the kinetic terms of the spin-2 and spin-0 degrees of freedom. In addition, we find that in presence of a cosmological time evolution of the Galileon field, its kinetic mixing with the graviton leads to a friction force, resulting to efficient damping of scalar perturbations within matter.Comment: 20 pages, no figure, RevTeX4 format; v2: minor changes reflecting the published version in PR

    Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G

    Full text link
    We show that the current bounds on the time variation of the Newton constant G can put severe constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short distance and in the static approximation, can in general not alter the cosmological time evolution of the scalar field. This results in a locally measured time variation of G which is too large when the matter-scalar coupling is of order one.Comment: RevTeX4 format; v.2: 5 pages, title changed, matches published versio

    Vector theories in cosmology

    Get PDF
    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F2,FF~)f(F^2,F\tilde F), as well as a Proca potential for the vector field, V(A2)V(A^2). In particular it is demonstrated that theories involving only f(F2)f(F^2) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A2)R f(A^2) or Rf(F2)Rf(F^2) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.Comment: 17 pages, no figur

    Light deflection by gravitational waves from localized sources

    Get PDF
    We study the deflection of light (and the redshift, or integrated time delay) caused by the time-dependent gravitational field generated by a localized material source lying close to the line of sight. Our calculation explicitly takes into account the full, near-zone, plus intermediate-zone, plus wave-zone, retarded gravitational field. Contrary to several recent claims in the literature, we find that the deflections due to both the wave-zone 1/r gravitational wave and the intermediate-zone 1/r^2 retarded fields vanish exactly. The leading total time-dependent deflection caused by a localized material source, such as a binary system, is proven to be given by the quasi-static, near-zone quadrupolar piece of the gravitational field, and therefore to fall off as the inverse cube of the impact parameter.Comment: 12 pages, REVTeX 3.0, no figur

    Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses

    Full text link
    Dimensional regularization is applied to the computation of the gravitational wave field generated by compact binaries at the third post-Newtonian (3PN) approximation. We generalize the wave generation formalism from isolated post-Newtonian matter systems to d spatial dimensions, and apply it to point masses (without spins), modelled by delta-function singularities. We find that the quadrupole moment of point-particle binaries in harmonic coordinates contains a pole when epsilon = d-3 -> 0 at the 3PN order. It is proved that the pole can be renormalized away by means of the same shifts of the particle world-lines as in our recent derivation of the 3PN equations of motion. The resulting renormalized (finite when epsilon -> 0) quadrupole moment leads to unique values for the ambiguity parameters xi, kappa and zeta, which were introduced in previous computations using Hadamard's regularization. Several checks of these values are presented. These results complete the derivation of the gravitational waves emitted by inspiralling compact binaries up to the 3.5PN level of accuracy which is needed for detection and analysis of the signals in the gravitational-wave antennas LIGO/VIRGO and LISA.Comment: 60 pages, LaTeX 2e, REVTeX 4, 10 PostScript files (1 figure and 9 Young tableaux used in the text

    Testing Alternative Theories of Gravity using LISA

    Full text link
    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm length, but is inversely proportional to the LISA position noise error. Lower bounds on the graviton Compton wavelength ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year observations of massive binary black hole inspirals at cosmological distances (3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent of these parameters because of the dominance of white-dwarf confusion noise in the relevant part of the frequency spectrum. These bounds improve and extend earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit

    Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter

    Full text link
    In this work it is investigated the evolution of a Universe where a scalar field, non-minimally coupled to space-time curvature, plays the role of quintessence and drives the Universe to a present accelerated expansion. A non-relativistic dark matter constituent that interacts directly with dark energy is also considered, where the dark matter particle mass is assumed to be proportional to the value of the scalar field. Two models for dark matter pressure are considered: the usual one, pressureless, and another that comes from a thermodynamic theory and relates the pressure with the coupling between the scalar field and the curvature scalar. Although the model has a strong dependence on the initial conditions, it is shown that the mixture consisted of dark components plus baryonic matter and radiation can reproduce the expected red-shift behavior of the deceleration parameter, density parameters and luminosity distance.Comment: 11 pages and 6 figures. To appear in GR

    Tensor-scalar gravity and binary-pulsar experiments

    Get PDF
    Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are interpreted as a scalar analog of ferromagnetism: "spontaneous scalarization". This phenomenon leads to very significant deviations from general relativity in conditions involving strong gravitational fields, notably binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish when the weak-field scalar coupling tends to zero. We compute the scalar "form factors" measuring these deviations, and notably a parameter entering the pulsar timing observable gamma through scalar-field-induced variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure

    Orbital Tests of Relativistic Gravity using Artificial Satellites

    Full text link
    We reexamine non-Einsteinian effects observable in the orbital motion of low-orbit artificial Earth satellites. The motivations for doing so are twofold: (i) recent theoretical studies suggest that the correct theory of gravity might contain a scalar contribution which has been reduced to a small value by the effect of the cosmological expansion; (ii) presently developed space technologies should soon give access to a new generation of satellites endowed with drag-free systems and tracked in three dimensions at the centimeter level. Our analysis suggests that such data could measure two independent combinations of the Eddington parameters (beta - 1) and (gamma - 1) at the 10^-4 level and probe the time variability of Newton's "constant" at the d(ln G)/dt ~ 10^-13 yr^-1 level. These tests would provide well-needed complements to the results of the Lunar Laser Ranging experiment, and of the presently planned experiments aiming at measuring (gamma -1). In view of the strong demands they make on the level of non- gravitational perturbations, these tests might require a dedicated mission consisting of an optimized passive drag-free satellite.Comment: 17 pages, IHES/P/94/22 and CPT-94/P.E.302

    Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial

    Get PDF
    PURPOSE: Shortening the duration of antibiotic therapy (ABT) is a key measure in antimicrobial stewardship. The optimal duration of ABT for treatment of postoperative intra-abdominal infections (PIAI) in critically ill patients is unknown. METHODS: A multicentre prospective randomised trial conducted in 21 French intensive care units (ICU) between May 2011 and February 2015 compared the efficacy and safety of 8-day versus 15-day antibiotic therapy in critically ill patients with PIAI. Among 410 eligible patients (adequate source control and ABT on day 0), 249 patients were randomly assigned on day 8 to either stop ABT immediately (n = 126) or to continue ABT until day 15 (n = 123). The primary endpoint was the number of antibiotic-free days between randomisation (day 8) and day 28. Secondary outcomes were death, ICU and hospital length of stay, emergence of multidrug-resistant (MDR) bacteria and reoperation rate, with 45-day follow-up. RESULTS: Patients treated for 8 days had a higher median number of antibiotic-free days than those treated for 15 days (15 [6-20] vs 12 [6-13] days, respectively; P < 0.0001) (Wilcoxon rank difference 4.99 days [95% CI 2.99-6.00; P < 0.0001). Equivalence was established in terms of 45-day mortality (rate difference 0.038, 95% CI - 0.013 to 0.061). Treatments did not differ in terms of ICU and hospital length of stay, emergence of MDR bacteria or reoperation rate, while subsequent drainages between day 8 and day 45 were observed following short-course ABT (P = 0.041). CONCLUSION: Short-course antibiotic therapy in critically ill ICU patients with PIAI reduces antibiotic exposure. Continuation of treatment until day 15 is not associated with any clinical benefit. CLINICALTRIALS. GOV IDENTIFIER: NCT01311765
    corecore