33 research outputs found

    Understanding and predicting trends in urban freight transport

    Get PDF
    Among different components of urban mobility, urban freight transport is usually considered as the least sustainable. Limited traffic infrastructures and increasing demands in dense urban regions lead to frequent delivery runs with smaller freight vehicles. This increases the traffic in urban areas and has negative impacts upon the quality of life in urban populations. Data driven optimizations are essential to better utilize existing urban transport infrastructures and to reduce the negative effects of freight deliveries for the cities. However, there is limited work and data driven research on urban delivery areas and freight transportation networks. In this paper, we collect and analyse data on urban freight deliveries and parking areas towards an optimized urban freight transportation system. Using a new check-in based mobile parking system for freight vehicles, we aim to understand and optimize freight distribution processes. We explore the relationship between areas' availability patterns and underlying traffic behaviour in order to understand the trends in urban freight transport. By applying the detected patterns we predict the availabilities of loading/unloading areas, and thus open up new possibilities for delivery route planning and better managing of freight transport infrastructures. © 2017 IEEE

    Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS

    Get PDF
    In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry

    TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration

    Get PDF
    Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions

    Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma

    Get PDF
    Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled

    The Whereabouts of 2D Gels in Quantitative Proteomics

    Get PDF
    Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using 2D gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of 2D gels is performed

    The state of the art in the analysis of two-dimensional gel electrophoresis images

    Get PDF
    Software-based image analysis is a crucial step in the biological interpretation of two-dimensional gel electrophoresis experiments. Recent significant advances in image processing methods combined with powerful computing hardware have enabled the routine analysis of large experiments. We cover the process starting with the imaging of 2-D gels, quantitation of spots, creation of expression profiles to statistical expression analysis followed by the presentation of results. Challenges for analysis software as well as good practices are highlighted. We emphasize image warping and related methods that are able to overcome the difficulties that are due to varying migration positions of spots between gels. Spot detection, quantitation, normalization, and the creation of expression profiles are described in detail. The recent development of consensus spot patterns and complete expression profiles enables one to take full advantage of statistical methods for expression analysis that are well established for the analysis of DNA microarray experiments. We close with an overview of visualization and presentation methods (proteome maps) and current challenges in the field

    IPG strip-based peptide fractionation for shotgun proteomics

    No full text
    Efficient fractionation of peptides is an essential prerequisite for comprehensive analysis of complex protein mixtures by shotgun mass spectrometry. The separation of peptides by isoelectric focusing is particularly attractive due to its orthogonality to reverse-phase HPLC. Here, we present a protocol for in-gel peptide isoelectric focusing using immobilized pH gradient strips. The method shows high resolving power for up to 1 mg of sample and is highly reproducible

    Isolated sphenoid sinus pathologies: A series of 40 cases

    No full text

    Preprint: A combined bioinformatics and LC-MS based approach for the development and benchmarking of a comprehensive database for CNS proteins in Lymnaea stagnalis

    No full text
    Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS based proteomics, are generating large biological (-omics) data sets which are useful for the identification and quantification of biomarkers involved in molecular mechanisms of any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of learning and memory, ageing and age-related as well as amyloid-β induced memory decline. In this investigation, we used a bioinformatics approach to designing and benchmarking a comprehensive CNS proteomics database (LymCNS-PDB) for the identification of proteins from the Central Nervous System (CNS) of Lymnaea stagnalis by LC-MS based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from an existing published Lymnaea stagnalis transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to sequences for molluscan proteins (including Lymnaea stagnalis and other molluscs) available from UniProtKB. LymCNS-PDB, which contains 9,628 identified matched proteins, was then benchmarked by performing LC-MS based proteomics analysis with proteins isolated from the CNS of Lymnaea stagnalis. MS/MS analysis using the LymCNS-PDB database led to the identification of 3,810 proteins while only 982 proteins were identified by using a non-specific Molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis to identify a plethora of protein interactomes involved in several CNS functions in Lymnaea stagnalis including learning and memory, aging-related memory decline and others
    corecore