316 research outputs found

    Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood.

    Get PDF
    Excess collagen synthesis (fibrogenesis) in the liver plays a causal role in the progression of nonalcoholic fatty liver disease (NAFLD). Methods are needed to identify patients with more rapidly progressing disease and to demonstrate early response to treatment. We describe here a novel method to quantify hepatic fibrogenesis flux rates both directly in liver tissue and noninvasively in blood. Twenty-one patients with suspected NAFLD ingested heavy water (2 H2 O, 50-mL aliquots) two to three times daily for 3-5 weeks prior to a clinically indicated liver biopsy. Liver collagen fractional synthesis rate (FSR) and plasma lumican FSR were measured based on 2 H labeling using tandem mass spectrometry. Patients were classified by histology for fibrosis stage (F0-F4) and as having nonalcoholic fatty liver or nonalcoholic steatohepatitis (NASH). Magnetic resonance elastography measurements of liver stiffness were also performed. Hepatic collagen FSR in NAFLD increased with advancing disease stage (e.g., higher in NASH than nonalcoholic fatty liver, positive correlation with fibrosis score and liver stiffness) and correlated with hemoglobin A1C. In addition, plasma lumican FSR demonstrated a significant correlation with hepatic collagen FSR.ConclusionUsing a well-characterized cohort of patients with biopsy-proven NAFLD, this study demonstrates that hepatic scar in NASH is actively remodeled even in advanced fibrosis, a disease that is generally regarded as static and slowly progressive. Moreover, hepatic collagen FSR correlates with established risks for fibrotic disease progression in NASH, and plasma lumican FSR correlates with hepatic collagen FSR, suggesting applications as direct or surrogate markers, respectively, of hepatic fibrogenesis in humans. (Hepatology 2017;65:78-88)

    Dehumidification Efficiency (DHE) of the Automated Multi Commodity Heat Pump Dryer (AMCHPD)

    Get PDF
    The inside condition of the drying air (% relative humidity) in a drying process is a crucial parameter to consider during the dehydration of commodities but this is often neglected yielding to food losses. The study identified the dehumidification efficiency of the Automated Multi Commodity Heat Pump Dryer (AMCHPD) in terms of the percent Relative humidity, ambient (RHa) and Relative humidity, desired (RHd). The AMCHPD was set to drying process using 5 selected fruits and vegetables, namely: mango, pineapple, moringa, saluyot and ube, respectively. From each drying process, the RHa and RHd were recorded in a database using a Raspberry pi. Average RHa and RHd were calculated using MS Excel. The % DHE was calculated using the formula: . Research findings revealed that the average RHa using the 5 commodities is 80.0% and the average RHd is 18.0% yielding to a 77.5% DHE. This means that the % RHd required to extract the initial moisture content of the commodities dehydrated is within the standard which is > or = to 18.0% and the calculated % DHE falls within the standard simulated in a convective drying method. Thus, the assembly of the major components of the AMCHPD was appropriate such that the operating conditions of the drying system are ideal

    Patient advocate involvement in the design and conduct of breast cancer clinical trials requiring the collection of multiple biopsies.

    Get PDF
    Plain english summary Breast cancer is a diverse and varied disease. Recent research has shown that the collection of multiple biopsies before surgery can help researchers determine how the cancer is responding to treatment and can predict for long-term outcomes. However biopsies can be uncomfortable, and sometimes clinicians and research teams in hospitals may be reluctant to offer clinical trials requiring several biopsies to patients who have been recently diagnosed with breast cancer. The Institute of Cancer Research Clinical Trials and Statistics Unit (ICR-CTSU) oversees a large number of breast cancer clinical trials where multiple biopsies are required. ICR-CTSU recognises that patient advocates (patients who have previously had, or cared for someone with, cancer) are key members of the trial design group and should be involved in the clinical trial throughout its lifespan. Patient advocates can provide reassurance regarding the acceptability of trial designs involving multiple biopsies from a patient perspective. This paper summarises patient advocate involvement in ICR-CTSU breast cancer trials activity and how this has benefited our research.Abstract The importance of collecting tissue samples in breast cancer has become increasingly recognised, as the diversity of the disease has become better known. It has been documented in recent research that tumours may change in response to treatment prior to surgery (the neoadjuvant treatment setting). The collection of sequential biopsies over time can identify changes within tumours and potentially predict how the tumour may respond to certain treatments. However, the acceptability of multiple biopsies amongst patients, clinicians and other research staff in hospitals is variable and recruitment into clinical trials requiring multiple biopsies may be challenging.The Institute of Cancer Research Clinical Trials and Statistics Unit (ICR-CTSU) is responsible for a portfolio of breast cancer trials where multiple biopsies are key to the trial design. Patient advocate involvement has been essential in helping us to design and deliver complex and innovative cancer trials which require multiple invasive tissue biopsies, often without any direct benefit to the trial participants. The views expressed by patient advocates involved in ICR-CTSU trials supports the published evidence that patients are willing to donate additional tissue for research and that clinicians' concerns about approaching patients for trials involving multiple biopsies are often unfounded.Patient advocate involvement in ICR-CTSU trials activity takes various forms, from membership on protocol development groups and trial management groups, attendance at focus groups and forums, and presentations at trial development and launch meetings. This involvement has provided reassurance to research teams within the NHS and research ethics committees of the importance and acceptability of our trials from a patient perspective. Patient advocate involvement throughout the lifetime of our trials ensures that the patient remains central to our research considerations

    Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera)

    Get PDF
    BACKGROUND: Sponges (Porifera) are nerve- and muscleless metazoa, but display coordinated motor reactions. Therefore, they represent a valuable phylum to investigate coordination systems, which evolved in a hypothetical Urmetazoon prior to the central nervous system (CNS) of later metazoa. We have chosen the contractile and locomotive species Tethya wilhelma (Demospongiae, Hadromerida) as a model system for our research, using quantitative analysis based on digital time lapse imaging. In order to evaluate candidate coordination pathways, we extracorporeally tested a number of chemical messengers, agonists and antagonists known from chemical signalling pathways in animals with CNS. RESULTS: Sponge body contraction of T. wilhelma was induced by caffeine, glycine, serotonine, nitric oxide (NO) and extracellular cyclic adenosine monophosphate (cAMP). The induction by glycine and cAMP followed patterns varying from other substances. Induction by cAMP was delayed, while glycine lead to a bi-phasic contraction response. The frequency of the endogenous contraction rhythm of T. wilhelma was significantly decreased by adrenaline and NO, with the same tendency for cAMP and acetylcholine. In contrast, caffeine and glycine increased the contraction frequency. The endogenous rhythm appeared irregular during application of caffeine, adrenaline, NO and cAMP. Caffeine, glycine and NO attenuated the contraction amplitude. All effects on the endogenous rhythm were neutralised by the washout of the substances from the experimental reactor system. CONCLUSION: Our study demonstrates that a number of chemical messengers, agonists and antagonists induce contraction and/or modulate the endogenous contraction rhythm and amplitude of our nerveless model metazoon T. wilhelma. We conclude that a relatively complex system of chemical messengers regulates the contraction behaviour through auto- and paracrine signalling, which is presented in a hypothetical model. We assume that adrenergic, adenosynergic and glycinergic pathways, as well as pathways based on NO and extracellular cAMP are candidates for the regulation and timing of the endogenous contraction rhythm within pacemaker cells, while GABA, glutamate and serotonine are candidates for the direct coordination of the contractile cells
    • …
    corecore