1,112 research outputs found

    Spectral and Temporal Variability of Earth Observed in Polarization

    Full text link
    We present a comprehensive set of spectropolarimetric observations of Earthshine as obtained by FORS2 at the VLT for phase angles from 50degree to 135degree (Sun-Earth-Moon angle), covering a spectral range from 430nm to 920nm. The degree of polarization in BVRI passbands, the differential polarization vegetation index, and the equivalent width of the O2A polarization band around 760nm are determined with absolute errors around 0.1 percent in the degree of polarization. Earthshine polarization spectra are corrected for the effect of depolarization introduced by backscattering on the lunar surface, introducing systematic errors of the order of 1 percent in the degree of polarization. Distinct viewing sceneries such as observing the Atlantic or Pacific side in Earthshine yield statistically different phase curves. The equivalent width defined for the O2A band polarization is found to vary from -5nm to +2nm. A differential polarized vegetation index is introduced and reveals a larger vegetation signal for those viewing sceneries that contain larger fractions of vegetated surface areas. We corroborate the observed correlations with theoretical models from the literature, and conclude that the Vegetation Red Edge(VRE) is a robust and sensitive signature in polarization spectra of planet Earth. The overall behaviour of polarization of planet Earth in the continuum and in the O2A band can be explained by existing models. Biosignatures such as the O2A band and the VRE are detectable in Earthshine polarization with a high degree of significance and sensitivity. An in-depth understanding of Earthshines temporal and spectral variability requires improved models of Earths biosphere, as a prerequisite to interpret possible detections of polarised biosignatures in earthlike exoplanets in the future.Comment: 19 pages, 14 figures, 3 table

    DEVELOPMENT OF VIRTUAL EVENT MARKETING

    Get PDF
    In the last few years the Pichia pastoris expression system has been gaining more and more interest for the expression of recombinant proteins. Many groups have employed fermentation technology in their investigations because the system is fairly easy to scale up and suitable for the production in the milligram to gram range. A large number of heterologous proteins from different sources has been expressed, but the fermentation process technology has been investigated to a lesser extent. A large number of fermentations are carried out in standard bioreactors that may be insufficiently equipped to meet the demands of high-cell-density fermentations of methylotrophic yeasts. In particular, the lack of on-line methanol analysis leads to fermentation protocols that may impair the optimal expression of the desired products. We have used a commercially available methanol sensor to investigate in detail the effects of supplementary glycerol feeding while maintaining a constant methanol concentration during the induction of a Mut+ strain of Pichia pastoris. Specific glycerol feed rates in the range of 38-4.2 mg × g(exp -1) × h(exp -1) (mg glycerol per gram fresh weight per hour) were investigated. Expression of the recombinant scFv antibody fragment was only observed at specific feed rates below 6 mg × g(exp -1) × h(exp -1). At low specific feed rates, growth was even lower than with methanol as the sole carbon source and the harvest expression level of the scFv was only half of that found in the control fermentation. These results show that glycerol inhibits expression driven by the AOX1 promoter even at extremely limited availability and demonstrate the benefits of on-line methanol control in Pichia fermentation research

    Searching of gapped repeats and subrepetitions in a word

    Full text link
    A gapped repeat is a factor of the form uvuuvu where uu and vv are nonempty words. The period of the gapped repeat is defined as u+v|u|+|v|. The gapped repeat is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its period. The gapped repeat is called α\alpha-gapped if its period is not greater than αv\alpha |v|. A δ\delta-subrepetition is a factor which exponent is less than 2 but is not less than 1+δ1+\delta (the exponent of the factor is the quotient of the length and the minimal period of the factor). The δ\delta-subrepetition is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its minimal period. We reveal a close relation between maximal gapped repeats and maximal subrepetitions. Moreover, we show that in a word of length nn the number of maximal α\alpha-gapped repeats is bounded by O(α2n)O(\alpha^2n) and the number of maximal δ\delta-subrepetitions is bounded by O(n/δ2)O(n/\delta^2). Using the obtained upper bounds, we propose algorithms for finding all maximal α\alpha-gapped repeats and all maximal δ\delta-subrepetitions in a word of length nn. The algorithm for finding all maximal α\alpha-gapped repeats has O(α2n)O(\alpha^2n) time complexity for the case of constant alphabet size and O(nlogn+α2n)O(n\log n + \alpha^2n) time complexity for the general case. For finding all maximal δ\delta-subrepetitions we propose two algorithms. The first algorithm has O(nloglognδ2)O(\frac{n\log\log n}{\delta^2}) time complexity for the case of constant alphabet size and O(nlogn+nloglognδ2)O(n\log n +\frac{n\log\log n}{\delta^2}) time complexity for the general case. The second algorithm has O(nlogn+nδ2log1δ)O(n\log n+\frac{n}{\delta^2}\log \frac{1}{\delta}) expected time complexity

    Quantitative Models and Implicit Complexity

    Full text link
    We give new proofs of soundness (all representable functions on base types lies in certain complexity classes) for Elementary Affine Logic, LFPL (a language for polytime computation close to realistic functional programming introduced by one of us), Light Affine Logic and Soft Affine Logic. The proofs are based on a common semantical framework which is merely instantiated in four different ways. The framework consists of an innovative modification of realizability which allows us to use resource-bounded computations as realisers as opposed to including all Turing computable functions as is usually the case in realizability constructions. For example, all realisers in the model for LFPL are polynomially bounded computations whence soundness holds by construction of the model. The work then lies in being able to interpret all the required constructs in the model. While being the first entirely semantical proof of polytime soundness for light logi cs, our proof also provides a notable simplification of the original already semantical proof of polytime soundness for LFPL. A new result made possible by the semantic framework is the addition of polymorphism and a modality to LFPL thus allowing for an internal definition of inductive datatypes.Comment: 29 page

    Hydrated Electron Dynamics at a Five Femtosecond Time Scale

    Get PDF
    Hydrated electrons are studied by frequency resolved pump probe with 5 fs time resolution in the spectral range from 600 nm to 1000 nm. A recurrence detected in the pumpprobe signal at —40 fs is tentatively assigned to coupling to librational motions in the electron's solvent cage

    Investigation of a Bubble Detector based on Active Electrolocation of Weakly Electric Fish

    Get PDF
    Weakly electric fish employ active electrolocation for navigation and object detection. They emit an electric signal with their electric organ in the tail and sense the electric field with electroreceptors that are distributed over their skin. We adopted this principle to design a bubble detector that can detect gas bubbles in a fluid or, in principle, objects with different electric conductivity than the surrounding fluid. The evaluation of the influence of electrode diameter on detecting a given bubble size showed that the signal increases with electrode diameter. Therefore it appears that this detector will be more appropriate for large sized applications such as bubble columns than small sized applications such as bubble detectors in dialysis

    Optimal Color Range Reporting in One Dimension

    Full text link
    Color (or categorical) range reporting is a variant of the orthogonal range reporting problem in which every point in the input is assigned a \emph{color}. While the answer to an orthogonal point reporting query contains all points in the query range QQ, the answer to a color reporting query contains only distinct colors of points in QQ. In this paper we describe an O(N)-space data structure that answers one-dimensional color reporting queries in optimal O(k+1)O(k+1) time, where kk is the number of colors in the answer and NN is the number of points in the data structure. Our result can be also dynamized and extended to the external memory model

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201
    corecore