research

Searching of gapped repeats and subrepetitions in a word

Abstract

A gapped repeat is a factor of the form uvuuvu where uu and vv are nonempty words. The period of the gapped repeat is defined as u+v|u|+|v|. The gapped repeat is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its period. The gapped repeat is called α\alpha-gapped if its period is not greater than αv\alpha |v|. A δ\delta-subrepetition is a factor which exponent is less than 2 but is not less than 1+δ1+\delta (the exponent of the factor is the quotient of the length and the minimal period of the factor). The δ\delta-subrepetition is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its minimal period. We reveal a close relation between maximal gapped repeats and maximal subrepetitions. Moreover, we show that in a word of length nn the number of maximal α\alpha-gapped repeats is bounded by O(α2n)O(\alpha^2n) and the number of maximal δ\delta-subrepetitions is bounded by O(n/δ2)O(n/\delta^2). Using the obtained upper bounds, we propose algorithms for finding all maximal α\alpha-gapped repeats and all maximal δ\delta-subrepetitions in a word of length nn. The algorithm for finding all maximal α\alpha-gapped repeats has O(α2n)O(\alpha^2n) time complexity for the case of constant alphabet size and O(nlogn+α2n)O(n\log n + \alpha^2n) time complexity for the general case. For finding all maximal δ\delta-subrepetitions we propose two algorithms. The first algorithm has O(nloglognδ2)O(\frac{n\log\log n}{\delta^2}) time complexity for the case of constant alphabet size and O(nlogn+nloglognδ2)O(n\log n +\frac{n\log\log n}{\delta^2}) time complexity for the general case. The second algorithm has O(nlogn+nδ2log1δ)O(n\log n+\frac{n}{\delta^2}\log \frac{1}{\delta}) expected time complexity

    Similar works

    Full text

    thumbnail-image

    Available Versions