45 research outputs found

    Statistical Uncertainties in Temperature Diagnostics for Hot Coronal Plasma Using the ASCA SIS

    Full text link
    Statistical uncertainties in determining the temperatures of hot (0.5 keV to 10 keV) coronal plasmas are investigated. The statistical precision of various spectral temperature diagnostics is established by analyzing synthetic ASCA Solid-state Imaging Spectrometer (SIS) CCD spectra. The diagnostics considered are the ratio of hydrogen-like to helium-like line complexes of Z14Z\ge14 elements, line-free portions of the continuum, and the entire spectrum. While fits to the entire spectrum yield the highest statistical precision, it is argued that fits to the line-free continuum are less susceptible to atomic data uncertainties but lead to a modest increase in statistical uncertainty over full spectral fits. Temperatures deduced from line ratios can have similar accuracy but only over a narrow range of temperatures. Convenient estimates of statistical accuracies for the various temperature diagnostics are provided which may be used in planning ASCA SIS observations.Comment: postscript file of 8 pages+3 figures; 4 files tarred, compressed and uuencoded. To appear in the Astrophysical Journal Letters; contents copyright 1994 American Astronomical Societ

    Self-Consistent and Time-Dependent Solar Wind Models

    Get PDF
    We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions

    Galaxy Cluster Shapes and Systematic Errors in H0 Measured by the Sunyaev-Zel'dovich Effect

    Get PDF
    Imaging of the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics can measure the cosmic distance scale to high redshift. Projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight introduces systematic errors in the Hubble constant, H0, because the true shape of the cluster is not known. I present a study of the systematic errors in the value of H0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal ``beta'' model clusters, caused by projection effects and observer orientation. I calculate estimates for H0 for each cluster based on their large and small apparent angular core radii and their arithmetic mean. I demonstrate that the estimates for H0 for a sample of 25 clusters have 99.7% confidence intervals for the mean estimated H0 analyzing the clusters using either their large or mean angular core radius are within 14% of the ``true'' (assumed) value of H0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters. This limit on the systematic error in H0 caused by cluster shape assumes that each sample beta model cluster has fixed shape; deviations from constant shape within the clusters may introduce additional uncertainty or bias into this result.Comment: Accepted for publication in the Astrophysical Journal, 24 March 1998; 4 pages, 2 figure

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×1024m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe

    A Multiphase Model for the Intracluster Medium

    Get PDF
    Constraints on the clustered mass density \Omega_m of the universe derived from the mean intracluster gas fraction of X-ray clusters may be biased by a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with radially dependent variance \sigma^2(r)=\sigma_c^2 (1+r^2/r_c^2)^{-\eps}. The model extends the work of Gunn & Thomas (1996) which assumed radially independent density fluctuations thoughout the ICM. Fixing the X-ray emission profile and emission weighted temperature, we explore two independently observable signatures of the model in the {\sigma_c,\eps} space. For bremsstrahlung dominated emission, the central Sunyaev--Zeldovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase X-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10^8 K cluster and demonstrate how the combination of SZ and X-ray spectroscopy can be used to identify a preferred location in the {\sigma_c,\eps} plane. From these parameters, the correct value of mean ICM gas fraction in the multiphase model results, allowing an unbiased estimate of \Omega_m to be recovered. The consistency of recent determinations of the Hubble constant from SZ and X-ray observations with values determined by other methods suggests that biases in ICM gas fractions are small, \ltsim 20%.Comment: Nine pages, submitted to Monthly Notices of the RAS. Seven postscript figures incoporate

    Uses of continuum radiation in the AXAF calibration

    Get PDF
    X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis

    Joint analysis of X-ray and Sunyaev Zel'dovich observations of galaxy clusters using an analytic model of the intra-cluster medium

    Get PDF
    We perform a joint analysis of X-ray and Sunyaev Zel'dovich (SZ) effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, Abell 2631 and Abell 2204.Comment: ApJ in pres

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX

    On the Internal Structure of Relativistic Jets

    Get PDF
    A magnetohydrodynamic model is constructed for a cylindrical jet immersed in an external uniform magnetic field. It is shown that, as in the force-free case, the total electric current within the jet can be zero. The particle energetics and the magnetic field structure are determined in a self-consistent way; all jet parameters depend on the physical conditions in the external medium. In particular, we show that a region with subsonic flow can exist in the central jet regions. In actual relativistic jets, most of the energy is transferred by the electromagnetic field only when the magnetization parameter is sufficiently large, σ>106\sigma>10^6. We also show that, in general, the well-known solution with a central core, Bz=B0/(1+ϖ2/ϖc2)B_z = B_0/(1+\varpi^2/\varpi_c^2), can not be realized in the presence of an external medium.Comment: 19 pages, 2 figure

    Linkage analysis of HLA and candidate genes for celiac disease in a North American family-based study

    Get PDF
    BACKGROUND: Celiac disease has a strong genetic association with HLA. However, this association only explains approximately half of the sibling risk for celiac disease. Therefore, other genes must be involved in susceptibility to celiac disease. We tested for linkage to genes or loci that could play a role in pathogenesis of celiac disease. METHODS: DNA samples, from members of 62 families with a minimum of two cases of celiac disease, were genotyped at HLA and at 13 candidate gene regions, including CD4, CTLA4, four T-cell receptor regions, and 7 insulin-dependent diabetes regions. Two-point and multipoint heterogeneity LOD (HLOD) scores were examined. RESULTS: The highest two-point and multipoint HLOD scores were obtained in the HLA region, with a two-point HLOD of 3.1 and a multipoint HLOD of 5.0. For the candidate genes, we found no evidence for linkage. CONCLUSIONS: Our significant evidence of linkage to HLA replicates the known linkage and association of HLA with CD. In our families, likely candidate genes did not explain the susceptibility to celiac disease
    corecore