5,796 research outputs found
Comparison of cattail (Typha sp.) occurrence on a photo-interpreted map versus a satellite data map
A comparison between a 1985 photo-interpreted vegetation map
and a vegetation map made from classified 1987 satellite data of
the Loxahatchee National Wildlife Refuge showed that 81% of
samples taken in areas occupied by cattail (Typha sp.) on the
photo-interpreted map corresponded with cattail on the satellite
data map.(5 page document
Shadowing Ministers: Monitoring Partners in Coalition Governments
In this article the authors study delegation problems within multiparty coalition
governments. They argue that coalition parties can use the committee system to
“shadow” the ministers of their partners; that is, they can appoint committee
chairs from other governing parties, who will then be well placed to monitor
and/or check the actions of the corresponding ministers. The authors
analyze which ministers should be shadowed if governing parties seek to
minimize the aggregate policy losses they suffer as the result of ministers pursuing
their own parties’ interests rather than the coalition’s. Based on data
from 19 mostly European parliamentary democracies, the authors find that the
greater the policy disagreement between a minister’s party and its partners,
the more likely the minister is to be shadowed
Doubly heavy quark baryon spectroscopy and semileptonic decay
Working in the framework of a nonrelativistic quark model we evaluate the
spectra and semileptonic decay widths for the ground state of doubly heavy
and baryons. We solve the three-body problem using a variational
ansatz made possible by the constraints imposed by heavy quark spin symmetry.
In order to check the dependence of our resultson the inter-quark interaction
we have used five different quarkquark potentials which include Coulomb and
hyperfine terms coming fromone-gluon exchange, plus a confining term. Our
results for the spectra are in good agreement with a previous calculation done
using a Faddeev approach. For the semileptonic decay our results for the total
decay widths are in a good agreement with the ones obtained within a
relativistic quark model in the quark-diquark approximation.Comment: Talk given at the IVth International Conference on Quarks an Nuclear
Physics (QNP06), Madrid, June 5th-10th 200
Chiral Multiplets of Heavy-Light Mesons
The recent discovery of a narrow resonance in D_s+pi^0 by the BABAR
collaboration is consistent with the interpretation of a heavy J^P(0+,1+) spin
multiplet. This system is the parity partner of the groundstate (0-,1-)
multiplet, which we argue is required in the implementation of SU(3)_L x
SU(3)_R chiral symmetry in heavy-light meson systems. The (0+,1+)->(0-,1-)+pi
transition couplings satisfy a Goldberger-Treiman relation, g_pi =
Delta(M)/f_pi, where Delta(M) is the mass gap. The BABAR resonance fits the 0+
state, with a kinematically blocked principal decay mode to D+K. The allowed
D_s+pi, D_s+2pi and electromagnetic transitions are computed from the full
chiral theory and found to be suppressed, consistent with the narrowness of the
state. This state establishes the chiral mass difference for all such
heavy-quark chiral multiplets, and precise predictions exist for the analogous
B_s and strange doubly-heavy baryon states.Comment: 10 pages; minor editorial revisions; recomputed M1 transitio
Orbital operations study. Appendix B: Operational procedures
Operational procedures for each alternate approach for each interfacing activity of the orbital operations study are presented. The applicability of the procedures to interfacing element pairs is identified
Classical limit in terms of symbolic dynamics for the quantum baker's map
We derive a simple closed form for the matrix elements of the quantum baker's
map that shows that the map is an approximate shift in a symbolic
representation based on discrete phase space. We use this result to give a
formal proof that the quantum baker's map approaches a classical Bernoulli
shift in the limit of a small effective Plank's constant.Comment: 12 pages, LaTex, typos correcte
Ozone Depletion from Nearby Supernovae
Estimates made in the 1970's indicated that a supernova occurring within tens
of parsecs of Earth could have significant effects on the ozone layer. Since
that time, improved tools for detailed modeling of atmospheric chemistry have
been developed to calculate ozone depletion, and advances have been made in
theoretical modeling of supernovae and of the resultant gamma-ray spectra. In
addition, one now has better knowledge of the occurrence rate of supernovae in
the galaxy, and of the spatial distribution of progenitors to core-collapse
supernovae. We report here the results of two-dimensional atmospheric model
calculations that take as input the spectral energy distribution of a
supernova, adopting various distances from Earth and various latitude impact
angles. In separate simulations we calculate the ozone depletion due to both
gamma-rays and cosmic rays. We find that for the combined ozone depletion
roughly to double the ``biologically active'' UV flux received at the surface
of the Earth, the supernova must occur at <8 pc. Based on the latest data, the
time-averaged galactic rate of core-collapse supernovae occurring within 8 pc
is ~1.5/Gyr. In comparing our calculated ozone depletions with those of
previous studies, we find them to be significantly less severe than found by
Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given
the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time
scale for multicellular organisms on Earth, this particular pathway for mass
extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical
Journal, 2003 March 10, vol. 58
Combined Face-Brain Morphology and Associated Neurocognitive Correlates in Fetal Alcohol Spectrum Disorders
BACKGROUND:
Since the 1970s, a range of facial, neurostructural, and neurocognitive adverse effects have been shown to be associated with prenatal alcohol exposure. Typically, these effects are studied individually and not in combination. Our objective is to improve the understanding of the teratogenic effects of prenatal alcohol exposure by simultaneously considering face-brain morphology and neurocognitive measures.
METHODS:
Participants were categorized as control (n = 47), fetal alcohol syndrome (FAS, n = 22), or heavily exposed (HE) prenatally, but not eligible for a FAS diagnosis (HE, n = 50). Structural brain MRI images and high-resolution 3D facial images were analyzed using dense surface models of features of the face and surface shape of the corpus callosum (CC) and caudate nucleus (CN). Asymmetry of the CN was evaluated for correlations with neurocognitive measures.
RESULTS:
(i) Facial growth delineations for FAS, HE, and controls are replicated for the CN and the CC. (ii) Concordance of clinical diagnosis and face-based control-FAS discrimination improves when the latter is combined with specific brain regions. In particular, midline facial regions discriminate better when combined with a midsagittal profile of the CC. (iii) A subset of HE individuals was identified with FAS-like CN dysmorphism. The average of this HE subset was FAS-like in its facial dysmorphism. (iv) Right-left asymmetry found in the CNs of controls is not apparent for FAS, is diminished for HE, and correlates with neurocognitive measures in the combined FAS and HE population.
CONCLUSIONS:
Shape analysis which combines facial regions with the CN, and with the CC, better identify those with FAS. CN asymmetry was reduced for FAS compared to controls and is strongly associated with general cognitive ability, verbal learning, and recall in those with prenatal alcohol exposure. This study further extends the brain-behavior relationships known to be vulnerable to alcohol teratogenesis
Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers
The temperature dependence of the electrical resistivity and
magnetoresistance of Xe-ion beam sputtered Fe-Cr multilayers has been
investigated. The electrical resistivity between 5 and 300 K in the fully
ferromagnetic state, obtained by applying a field beyond the saturation field
(H_sat) necessary for the antiferromagnetic(AF)-ferromagnetic(FM) field-induced
transition, shows evidence of spin-disorder resistivity as in crystalline Fe
and an s-d scattering contribution (as in 3d metals and alloys). The sublattice
magnetization m(T) in these multilayers has been calculated in terms of the
planar and interlayer exchange energies. The additional spin-dependent
scattering \Delta \rho (T) = \rho(T,H=0)_AF - \rho(T,H=H_sat)_FM in the AF
state over a wide range of temperature is found to be proportional to the
sublattice magnetization, both \Delta \rho(T) and m(T) reducing along with the
antiferromagnetic fraction. At intermediate fields, the spin-dependent part of
the electrical resistivity (\rho_s (T)) fits well to the power law \rho_s (T) =
b - cT^\alpha where c is a constant and b and \alpha are functions of H. At low
fields \alpha \approx 2 and the intercept b decreases with H much the same way
as the decrease of \Delta \rho (T) with T. A phase diagram (T vs. H_sat) is
obtained for the field- induced AF to FM transition. Comparisons are made
between the present investigation and similar studies using dc magnetron
sputtered and molecular beam epitaxy (MBE) grown Fe-Cr multilayers.Comment: 8 pages, 10 figures, to appear in Phys. Rev.
- …
