3,045 research outputs found

    Complex noise in diffusion-limited reactions of replicating and competing species

    Full text link
    We derive exact Langevin-type equations governing quasispecies dynamics. The inherent multiplicative noise has both real and imaginary parts. The numerical simulation of the underlying complex stochastic partial differential equations is carried out employing the Cholesky decomposition for the noise covariance matrix. This noise produces unavoidable spatio-temporal density fluctuations about the mean field value. In two dimensions, the fluctuations are suppressed only when the diffusion time scale is much smaller than the amplification time scale for the master species.Comment: 10 pages, 2 composite figure

    Statistical interpretations and new findings on Variation in Cancer Risk Among Tissues

    Get PDF
    Tomasetti and Vogelstein (2015a) find that the incidence of a set of cancer types is correlated with the total number of normal stem cell divisions. Here, we separate the effects of standing stem cell number (i.e., organ or tissue size) and per stem cell lifetime replication rate. We show that each has a statistically significant and independent effect on explaining variation in cancer incidence over the 31 cases considered by Tomasetti and Vogelstein. When considering the total number of stem cell divisions and when removing cases associated with disease or carcinogens, we find that cancer incidence attains a plateau of approximately 0.6% incidence for the cases considered by these authors. We further demonstrate that grouping by anatomical site explains most of the remaining variation in risk between cancer types. This new analysis suggests that cancer risk depends not only on the number of stem cell divisions but varies enormously (\sim10,000 times) depending on the stem cell's environment. Future research should investigate how tissue characteristics (anatomical site, type, size, stem cell divisions) explain cancer incidence over a wider range of cancers, to what extent different tissues express specific protective mechanisms, and whether any differential protection can be attributed to natural selection

    Wormhole Cosmology and the Horizon Problem

    Full text link
    We construct an explicit class of dynamic lorentzian wormholes connecting Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way transmission of signals between spatially separated regions of spacetime and could permit such regions to come into thermal contact. The cosmology of a network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe

    Electromagnetic waves in a wormhole geometry

    Get PDF
    We investigate the propagation of electromagnetic waves through a static wormhole. It is shown that the problem can be reduced to a one-dimensional Schr\"odinger-like equation with a barrier-type potential. Using numerical methods, we calculate the transmission coefficient as a function of the energy. We also discuss the polarization of the outgoing radiation due to this gravitational scattering.Comment: LaTex file, 5 pages, 2 figures, one reference added, accepted for publication in PR

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Vacuum polarization in the spacetime of charged nonlinear black hole

    Get PDF
    Building on general formulas obtained from the approximate renormalized effective action, the approximate stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of charged black hole being a solution of coupled equations of nonlinear electrodynamics and general relativity is constructed and analysed. It is shown that in a few limiting cases, the analytical expressions relating obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the Reissner-Nordstr\"{o}m black hole could be derived. A detailed numerical analysis with special emphasis put on the minimal coupling is presented and the results are compared with those obtained earlier for the conformally coupled field. Some novel features of the renormalized stress-energy tensor are discussed

    Cylindrical thin-shell wormholes

    Full text link
    A general formalism for the dynamics of non rotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated to local cosmic strings. It is found that the throat collapses to zero radius, remains static or expands forever, depending only on the sign of its initial velocity.Comment: 10 page

    Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term

    Get PDF
    We study five dimensional thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term. The linearized stability under radial perturbations and the amount of exotic matter are analyzed as a function of the parameters of the model. We find that the inclusion of the quadratic correction substantially widens the range of possible stable configurations, and besides it allows for a reduction of the exotic matter required to construct the wormholes.Comment: 13 pages, 6 figures; v2: minor changes and new references added. Accepted for publication in General Relativity and Gravitatio
    corecore